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Preface

After happily owning and using my Color Computer for some time, I
decided to try assembly language programming. I found no book available,
however, that adequately presents assembly language programming applied
specifically to the Color Computer. I ended up using several books, jumping
from one to another to piece together the information I required for each
program.

1 became quite tired of not having the necessary information required
to program my computer available in one place or book. So I began this
book; a book for the assembly language programmer of the Color Computer. I
structured this book as a learning aid for readers unfamiliar with assembly
language so that they can learn it themselves. You will truly enjoy
learning, and then programming, in assembly language; and you will be
amazed at the results you can achieve on your Color Computer.




Introduction

This book is for the Color Computer owner who has learned how to
program in BASIC and wants to learn assembly language. Information and
concepts are presented in an order that will facilitate learning: we’ll
progress from simple, more basic concepts in the early chapters through
more advanced topics in later chapters. When new technical words are
introduced their first use will be printed bold to get your attention.

Specific information in this book applies to Color BASIC 1.1, Extended
Color BASIC 1.0, Disk Extended Color BASIC 1.0, and the E revision Color
Computer. Some of the differences (they are quite minor) in the Color
Computer 2 are also presented.

Each new concept is followed by an example or two. Each example should
be studied, although it would be better to work them out. Even better, try
to construct similar examples to solve. You’ll remember each concept more
clearly if you work out some problems using them.

An assembly language programmer specifies each operation the computer
will perform. Thus, this language is quite tedious. The computer will do
just what you direct it, and nothing else, resulting in programs that run
very fast. Assembly language is a symbolic language, in that the
programmer specifies the operations to be performed by using their symbol.
The programmer must understand the operations the computer can perform.

Chapter 1 is a comprehensive introduction to binary numbers, which all
digital computers use. Digital computers work with digits, or numbers, and
the numbering system they use is called the binary number system. Chapter 2
describes how binary numbers are used to represent information, as numbers
or text data. Also covered are the operation and use of a computer’s
memory, and how information is organized in it. At the end of Chapter 2 I
describe how Extended Color BASIC represents and stores data in memory.

Chapter 3 describes the MC6809E - the microprocessor used in the Color
Computer. Its operation and internal structure are described in detail -
neccessary information for an assembly language programmer. Chapters 4 and
5 describe the addressing modes and the instructions the MC6809E uses.
Addressing modes are the various techniques the microprocessor uses to
store data in or read data from memory. The instructions are the commands
the microprocessor is capable of performing.

Chapter 6 describes the operation and use of EDTASM+, a very good text
editor and assembler sold by Radio Shack. All assembly program examples in
this book were written using the EDTASM+ ROM pack. You should understand as
much as possible about the assembler you are using because it is the
primary tool used to create a program. Chapter 7 describes how to write



assembly language programs. Conventions and guidelines are provided to help
the programmer write programs that work and that make editing or debugging
much easier. Techniques for writing subroutines and interrupt handlers are
also presented. Chapter 8 contains techniques and information needed to

make assembly language programs work with BASIC programs. Many of the
subroutines that exist in BASIC ROM are presented along with how your
assembly language programs can use-them. These subroutines primarily serve
to transfer data between the computer and other devices such as the
keyboard, screen, printer, joysticks, cassette, and disk.

Chapter 9 reveals other internal workings of the Color Computer. You
will see how to control the graphics display modes, interrupts, and some
other aspects of the computer’s operation. Chapter 10 goes deeper into the
operation of the computer, describing how data is transmitted to or
received from other devices such as the printer, joysticks, keyboard, and
cassette, and how to make and control sound. The cartridge connector is
also described.

Even though much information is provided in this book, it is still an
introduction. This book presents all the information about the Color
Computer hardware any programmer might need. However, there are many
more concepts and philosophies concerning assembly language programming
than those presented here. For instance, many employers have established
unique conventions-and guidelines -for programming that apply to specific
types of programs that employer develops.

To use this book, start at the first chapter and procede to the last.

Those already familiar with-assembly language may start with Chapter 3.
You will find ‘this book provides all the information a beginner or expert
needs to program the Color Computer in assembly language.
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CHAPTER 1

The Binary Number System

Electronic digital computers are composed of tens of thousands of
electronic circuits each of which must be economical to produce and also
must operate reliably. To accomplish this, electronic circuits have been
designed as electronic switches with two states: on and off. An electronic
switch can be only on or off; this promotes the use of a number system with
only two digits. This is the binary number system. Binary uses only two
digits, 0 and 1, that respectively represent the two switch states, off and
on.

The number system we are most familiar with is the decimal number
system, made up of 10 digits, 0 - 9. Another way to describe the decimal
number system is to say that it has a base, or radix, of 10. The base
designation tells us the number of digits available in the system. A
decimal number may be represented as:

235,

where the subscript 10 indicates the base, or radix, of the number. In base
10, this is the familiar number 235; we don’t print the base subsript
because we assume everyone is using same base. However, when not using base
10, you should indicate this with a subscripted number that indicates the
base being used.
The value of a number is the sum of all the products of each digit and
the weight of that digit’s position. In the above example, the 5 is in the
units (one’s) position, the 3 is in the tens position, and the 2 is in the
hundreds position. Therefore, the value is calculated as:

235,, = (2x100)+(3x10)+(5x1)



In the following example there is a decimal point, also known as a radix
point.

12.75,4 = (1x10)+(2x1)+(7x.1)+(5x.01)

Determining Position Weight

Digit positions are counted in decimal, using the radix point as the
starting point. The digit positions to the left of the radix point are
counted by starting with position number zero (0) just to the left of the
radix point. Each succeeding position number, proceding to the left from
the radix point, is larger by one. Digit positions to the right of the
radix point are counted by starting with position number minus one (-1),
just to the right of the radix point. Each succeeding position number, to
the right from the radix point, is decreased by one. The form used to
indicate the digit positions of a numbering system in any base is:

. 3210.-1-2-3-4 .,

where ... indicates an indefinite continuation.

Using the example number 12.75, the 1 is in digit position one (1), the
2 is in digit position zero (0), the 7 is in digit position minus one (-1),
and the 5 is in digit position minus two (-2). The decimal weight of each
digit position can be calculated now that we know the base and the digit
position. The weight of a digit position is the base raised to the power of
that position. In general, the digit position weights are calculated as
follows:

b2 bl B pt p?opd

where b is the base of the numbering system. Therefore, the weights of each
digit position for decimal numbers (b = 10) are:

.. 10% 10' 10°. 101 1072 10°% ..
or
.. 100 10 1.0.1 .01 .001 ...

Raising a number to a power is accomplished by multiplying that number
by itself the number of times the power, or exponent, indicates. If the
exponent is negative, the result will be inverted. Examples of this
procedure follow:

102 = 10x10 = 100
23 = 2x2x2 = 8
1072 = 1/10% = 1/100 = .01



Two situations require further explanation. When a number (N) is raised
to the power of one, the result is that number (N). For example:

N'=N, 10t =10,2' =2

When any number is raised to the power of zero, the result is always one.
For example:

NO=1,5=1,2=1

BINARY NUMBERS

Since decimal and binary numbers will be presented concurrently, a
convention must be established to differentiate one from the other. Each
number will be referred to as decimal or binary or its base will be
presented as a subscript. The binary number system has a base of two; the
decimal weight of each digit position is calculated as shown:

.28 22 21 20 -1 -2 5-3 5-4

where the exponent indicates the digit position.

Digit Decimal
Position Weight
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

Table 1-1 Decimal Weights of Binary Digit Positions.

This may also be represented as:



.84 2 1.1/2 1/4 1/8 1/16 ...

In Table 1-1 the decimal weights of the binary digit positions 0 - 15 are
given. You should be able to verify the values in Table 1-1.

Straight Binary Numbers
A binary number is made up of a series of the binary digits 0 and 1.
Examples of binary numbers are:

101
101100
110.01

The radix point is used the same as in a decimal number; it is not usually
printed if no digits are to its right. The decimal value of a binary number
is the sum of the all products of each digit and the decimal weight of that
digit’s position. This is one way of converting binary numbers to decimal:

101 = (1x4)+(0x2)+(1x1) = 5
10110 = (1x16)+(0x8)+(1x4)+(1x2)+(0x1) = 22
110.01 = (1x4)+(1x2)+(0x1)+(0x1/2)+(1x1/4) = 6 1/4

A binary digit is commonly called a bit, and a numeric suffix is
added to indicate the digit position. Therefore, bit 0 is the binary digit
in position zero (the units position) and bit 1 is the binary digit in
position one (the twos position) and so on. There are other terms commonly
used to describe the state (either 0 or 1) of a bit. When a bitisa 1, it
may also be said to be true, set, or on. When a bit is a 0, it may
also be said to be false, clear, reset, or off. In the following
example, bit 0 is set(or on), bit 1 is reset(or clear, or off), bit 2 is
set, etc. All the other bits not printed are reset(zeros).

10101

The bits of a binary number contribute a value to the magnitude of
that number according to its digit position. The bit in the rightmost
position is the least significant bit, or LSB, because its digit
position has the smallest weight and therefore contributes least to the
magnitude of the number. The bit at the leftmost position is the most
significant bit, or MSB, because it contributes most to the magnitude of
the number. An example is:

M L
10011010



where the M and L respectively indicate the most and least significant
bits.

The binary numbers that have been described so far are straight
binary numbers. In straight binary all the bits are used to determine only
the magnitude of the number, and none of the bits are used to indicate the
sign of the number. All straight binary numbers are considered to be
positive.

Signed Binary Numbers

Typically, a personal digital computer works with eight bits at a
time, just as a calculator or adding machine may work with eight to twelve
decimal digits, depending on the model. With eight bits, straight binary
numbers from 00000000 (0,,) to 11111111 (255,,) can be represented.
Signed binary is a technique to represent positive and negative numbers.
Signed binary numbers indicate the sign of a number, but cannot represent
as large a number in a given number of bits because the MSB is designated
as the sign bit. When the MSB is a zero, the number is positive; when it
is a one, the number is negative.

Positive signed binary numbers appear the same as straight binary
numbers but with a reduced range. An eight-bit positive number can range
from 00000000 (0,,) to 01111111 (127,,). Representing negative numbers
is less straightforward. A negative number is formed by computing the
two’s complement of the positive number, That is, a negative number (-X)
is the two’s complement of the same positive number (+X).

The two’s complement is calculated by first writing down the
corresponding positive eight-bit binary number. Then copy the rightmost 1
bit and all the bits to the right of it, if any. Finally, -write the
opposite state for all the bits to-the left of -the 1 bit you first copied.

Here are some examples of the conversion process. The top number is the
positive number; the bottom is the two’s complement (negative number).

*
00000100 (+440)
>>>>>\\\
11111100 (-440)
*
00110010 (+504¢)
>>>>>>\\
11001110 (-50,4¢)

The * marks the rightmost 1 bit, the \ indicates a direct copying down, and
the » indicates copying of the opposite state. Notice that negative numbers
always have the MSB set.



The range of negative numbers that can be represented with eight bits
is 11111111 (-1,,) to 10000000 (-128,,). Only 256 numbers can be
represented in eight bits; this is the same for straight binary (0 - 2553)
and signed binary (-128 - +127). Table 1-2 shows a sequence of signed
binary numbers and their decimal equivalents. As you can see, the sign bit
15 set in all the negative numbers, and is clear in all the positive
numbers.

Signed Binary Decimal
00000101 +5
00000100 +4
00000011 +3
00000010 +2
00000001 +1
00000000 0
11111111 -1
11111110 -2
11111101 -3
11111100 -4
11111011 -5

Table 1-2 Signed Binary and Decimal Integers.

If you are presented with a two’s complement negative number and you
want to know its binary or decimal value, simply compute the two’s
complement of the number. This will give you the positive binary value.
From this you can find the decimal value by adding the products of the
digits and their digit position decimal weights. For example:

find decimal

value of 11100100
form two’s :
complement 00011100
bit decimal

weight 128643216 8 4 2 1
decimal

value = (1x4) + (1x8) + (1x16) = 28
therefore: 11100100 = -28;,

In preceding examples, eight bits were used to represent signed binary




numbers; this can be increased to 16 or 32 or however many bits are needed
to represent the range of numbers one will be working with. An eight-bit
signed binary number can be represented with more bits by adding bit
positions to the left and assigning them their proper state. The state of

the added bit positions will be the same as the state of the original MSB,

or sign bit. Here are examples of converting an eight-bit signed binary
number to 16 bits:

*

8 bit 00000110 (+6,,)

*
16 bit  0000000000000110 (+644)

*

8 bit 11111011 (=5,,)

*

16 bit 1111111111111011 (-3,0)

where * indicates the sign bit. This process of repeating the sign bit in
the added bit positions is called sign extension.

ARITHMETIC OPERATIONS

The arithmetic operations of addition, subtraction, multiplication,
and division can be performed with binary numbers. These binary operations
are quite similar to their decimal counterparts.

Addition
Addition is performed by adding the digits in a column, one column at
a time, from right to left. If the result is less than the base, that
result is put into the corresponding digit position ofthe sum. If the
result is greater than or equal to the base, the base is subtracted from
the result and the resulting digit is put into its digit position in the
sum and a carry of one is added to the next column of digits to the left.
This can be seen in the following decimal example: :

cc
376
+ 76
452

where 6+6 = 12 and 12-10 = 2 and a carry of one;
where a carry of 1+7+7 = 15 and 15-10 = 5 and a carry of one;
and where a carry of 143 = 4.



An example of binary addition, (base = 2), using this technique is:

c
1010
+ 0011
1101

Beginning in the rightmost column, 0+1 = I;

in the 2nd column, 1+1 = 2 and 2-2 = 0 with carry of one;
in the 3rd column, a carry of 1+040 = I;

and in the leftmost column, 140 = 1.

Addition may also be performed by using a limited set of rules. There
are only two digits in binary and computers typically add only a pair of
numbers at one time; therefore, the number of all possible combinations of
adding zeros and ones is only four. The four possible combinations of
adding zeros and ones can be considered the rules of binary addition. They
are;

ey 2) 3) (4)
0 0 1 1
+0 1 +0 +1
0 1 1 c0,or 10

The first three cases are straightforward; in the fourth case, one added to
one is zero with a carry of one, to be added to the next column. In this
case the next bit is a zero so the result is a binary 10. Examples of
adding binary numbers are:

c cce
0100 1001 101
+1001 + 101 + 11
1101 1110 1000

You can double check the above examples by converting the binary numbers to
decimal and seeing that the results of decimal addition are the same.

The important point in dealing with bases is to realize that binary
numbering is just another way to represent a conceptual quantity. If one
has five apples, the number of apples is just as validly represented with a
decimal 5 or a binary 101.

If the sum of binary addition is larger than can be represented in the
number of bits a computer works with, an error will result. If the sum of
straight binary addition is larger than 255 (decimal) in a computer that
uses eight bit positions, the correct result will not be generated. This
condition is called overflow. An example of an eight-bit overflow as a
result of addition is shown below. The values in parentheses are the




decimal equivalents.

cc
11000110 (198)

+ 01011001 + (89)
00011111 notequal to (287)

An overflow generated by adding straight binary numbers is detected by
watching for a carry beyond the MSB. If a carry is generated from the MSB
column, an overflow has occurred. If no carry is generated, there is no
overflow,

With the ability to add binary numbers one can count. Table 1-3 is a
list of the first 16 positive binary integers, starting with zero, and
their equivalent decimal values. You should be able to reproduce this table
by counting in binary; start with zero and add a 1 to generate each
consecutive number.

Binary Decimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 - 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Table 1-3 Binary and Decimal Integers.

Another Two’s Complement Technique

We now have the ability to calculate the two’s complement with a second
technique. First write down a positive binary number. Then copy each b1t
but in its opposite state, and add one to the result. For example



8-bit positive 00000101 (+54¢)

11111010
two’s + 1
complement = 11111011 (=5.0)

Subtraction

To subtract decimal numbers, you first note the sign of the number of
the larger magnitude, subtract the number of the smaller magnitude from the
larger, and then apply the previously remembered sign to the result. During
the subtraction, you may need to subtract a larger digit from a smaller
digit in a column; you do that by borrowing from the next most significant
digit position. Borrowing reduces by one the digit to the left of the digit
currently being subtracted from, and adds the base (ten for decimal) to the
digit in the column you are currently working. An example of decimal
subtraction is:

b
342
- 15

327

Here 2 is less than 5, so borrow from 4 (4 - 1 = 3),
add the base to 2 (10 +2 =12); 12 -5 =7,

3 is larger than or equals 1, s0 3 - 1 = 2;

and 3 is larger than or equals 0, so 3 - 0 = 3.

The b indicates a borrow. Using this same technique, an example of binary
subtraction would look like:

Qo — o

0
=011
1

O s —

1 is larger than or equals 1,50 1 - 1 = 0;

0 is less than 1, so borrow from 1 (1 - 1 = 0),

add the base to 0 (2 + 0 = 2), and subtract 2 - 1 = I;
and 0. is larger than or equals 0, so-0 - 0 =.0. '

All the possible results of subracting zeros and ones in binary can be
shown in four cases:

(1) © 2 b 0 3) 1 4) 1
=0 =1 =0 -1
0 1 1 0



The b indicates a borrow from the next most significant position. One could
use the four rules to perform binary subtraction. Some examples of binary
subtraction follow. The values in parentheses are decimal.

b
(A) 1110 (14) (B) 1010 (10)
- 100 (=4) - 0100 (-4)
1010 (+10) 0110  (+6)
bb
(C) 00010100 (20) 00101011  (43)

- 00101011 (-43) => - 00010100 (-20)
00010111  (+23)

two’s complement = 11110111  (-23)

In example C the result is negative, so the additional step of calculating
the two’s complement is required.

For a digital computer to perform these involved processes would
require additional digital circuitry and increased cost. Computers that
can perform straight binary subtraction may shorten the process by not
determining the larger of the two numbers, generating an overflow condition
if a larger number is subtracted from a smaller number and an apparently
invalid result. The correct result is the two’s complement of the interim
result. An example:

(6)

0
0 -0
0 interim result

b 0
- 1
1

=IO -
(e RN

0100 (-4)

Another subtraction technique is to add a negative number to a positive
number according to the following relationship:

a+(-b)=a-b

This uses signed binary to represent positive and negative values, and
follows the rules of binary addition. Examples of eight-bit subtraction
using this technique are: :

ccC

00100110  (+38) 00010010  (+18)
+ 11111000 (-8)  + 11101100 (-20)

00011110 (+30) 11111110 (-2)




Two positive signed binary numbers can also be added to give the total
in signed binary. If the result of signed binary addition is too large
(either positive or negative) to fit within the number of working bits, an
overflow is generated and the result is invalid. The condition of too large
a negative number is also called an underflow. An overflow or underflow
can occur only when both signed binary numbers are of the same sign and of
a large enough magnitude. An overflow or underflow generated by adding
signed binary numbers is detected by looking for carries beyond the two
most significant bit positions. In eight bits, bits 6 and 7 are the two
MSBs. If both bit positions either do or do not generate a carry, there is
no overflow or underflow. If one bit position generates a carry and the
other does not, there is an overflow or underflow. Below are two examples
of adding signed binary numbers. Example A generates an overflow condition
and B generates an underflow.

(A) ce cee B) ¢
01010011 10010110
+ 00110101 + 11001000
10001000 01011110
Multiplication

The process of straight binary multiplication is very similar to
decimal multiplication. The main difference is in the binary multiplication
table, which follows:

0 0 1 1
x0 x1 x0 x1
0 0 0 1

Multiplication is performed by multiplying each bit of the multiplicand
by each bit of the multiplier using the binary multiplication table. The
result is placed underneath each multiplier bit position and extended to
the left. Then the results of each bit multiplication are added together to
give the final answer. Examples of this process are:

(A) (B)
00101101 (45) ' 00010100  (20)
X 11 3) X 101 (5)
00101101 00010100
00101101 00000000
010000111 (135) 00010100

0001100100  (100)

When multiplying, be careful that the result fits within the number of




bits a computer uses. The largest result (in straight binary) that can be
represented is 11111111 (255,,) in eight bits and 1111111111111111
(65535,) in 16 bits. If the result is larger than the limit, the most
significant one bits that fall beyond the number of working bit positions
will be lost, and the final result will be meaningless.

When the multiplier has only one bit set in it, multiplying shifts the
multiplicand to the left N bit positions with respect to the radix or
binary point (where N is the bit position of the set bit in the
multiplier). Examples of binary numbers with only one set bit are 10, 100,
and 1000. Put another way, multiplying by 2, 4, or 8 is done by shifting
the binary point of the multiplicand to the right one, two, or three
positions. Multplication of signed binary numbers is not often attempted
because of the difficulties of handling the sign bit.

Division

Division is the process of determining how many times one number (the
divisor) is contained in another number (the dividend). Binary division is
performed much like decimal long division, in that one uses a trial and
error method to see how many times the divisor is contained in the
dividend. In binary long division, the divisor either is (1), or is not (0)
contained in a group of bits. Consider the following example:

1010 / 10 = 0101
10 / 1010
-0
10
-10
01
-0
10
-10
0

The division process follows: :10 is not contained in 1 (the MSB of the
dividend), so put a 0 (MSB) in the quotient area, subtract 0 x 10 from 1,
and bring down the next dividend bit (0). 10 is contained in 10, so put a 1
in the quotient area, subtract 1 x 10 from 10, and bring down the next
dividend bit (1). 10 is not contained in 1, so put a 0 in the quotient
area, subtract 0 x 10 from 1, and bring down the next dividend bit (0). 10
is contained in 10, so put a 1 in the quotient area, subtract 1 x 10 from
10 leaving a 0 indicating that 10 evenly divides into 1010.

If the divisor has only one bit set in it, as in the last example, the
quotient is the dividend shifted to the right N bit positions with resptect
to the binary point (N is the bit position of the bit set in the divisor).

13



Put another way, division can be accomplished by shifting the binary point
of the dividend to the left if the divisor is binary 10, 100, 1000, etc.,
or decimal 2, 4, 8, 18, etc.

LOGICAL OPERATIONS

We have seen how bits can represent numbers; as you remember, bits
were originally used to represent the state of electronic switches. Just as
bits are used to represent the computer’s internal switch states, we could,
by analogy, use a bit to indicate the state or condition of anything we
choose. The state of a bit is determined by asking if an event or situation
is true or false. If the statement, it is raining, is true, the bit is set
to 1. If it is false, the bit is cleared to 0. A number of bits could be
used to represent a number of events as follows:

bit 0 indicates it is raining
bit 1 indicates it is cloudy = 1001
bit 2 indicates I am indoors
bit 3 indicates I am hungry

The four bit code above, read from left to right, reveals that: I am
hungry, I am not indoors, it is not cloudy, and it is raining. Depending on
the conditions represented, the bits are set or cleared with no regard for
the state of any other bit. This is quite unlike any arithmetic operations
we have covered; these nonarithmetic operations are called logical
operations.

Complement

The logical operation of taking a complement is to reverse the bit
states. Forming the complement of a bit or a series of bits is performed by
replacing each 1 with a 0, and each 0 with a 1. The symbol that indicates a
complement is to be taken is a bar over the quantity to be complemented:

1=0

0110 = 1001

Since a bit can be in only one of two states, a complemented bit is
not in its original state. This may seem obvious, but the concept is useful
in representing logical relationships:

X =not X

it is raining = it is not raining

true = false




X is a condition represented by a bit. The complement of an event may also
be called not an event.

Inclusive Or

Inclusive or (OR) is a logical operation performed between two or
more bits, although digital computers usually perform an inclusive or
between only two bits. The four possible cases of inclusive oring a pair of
bits are:
OORO0=0
0 =]
1
1

oNON®)

m AR

—_0 = O
]

1
=1

where OR indicates that the inclusive or operation is to be performed
between the two bits surrounding it. As you can see, the result of
inclusive oring two bits is 1 if any of the original bits are 1. The
inclusive or is also known simply as an ‘OR operation. A truth table can
also be used to represent this logical operation on two bits, A and B, as
seen in Fig. 1-1.

A0 1
B
04011
13191

Fig. 1-1 The OR Operator Truth Table.

The top row of Fig. 1-1 shows the possible states of A, and the
leftmost column shows the possible states of B. The value of A OR B can be
found-at. the intersection of the column of the particular value of ‘A and
the row of the particular value of B. In a computer that works with eight
bits, a group of eight bits is ORed with another group of eight bits. The
ORing process is done between bits of the same bit position as follows:

01101001 = X
00110001 =Y
01111001 =X OR Y

And '
The AND operation between a number of bits results in a 1 only if all
the bits being ANDed are 1. The four possible cases of ANDing two bits
are:
0AND O =0
0AND 1 =0
0
1

]

1 AND 0
1 AND 1

]



The truth table for the AND operation of bits A and B is shown in Fig. 1-2
where you can see that A AND B is true only if A and B are both true.

A0 1

B
0 1010
1 1011

Fig. 1-2 The AND Operator Truth Table.

The ANDing of two groups of bits is done by ANDing pairs of bits in
the same bit position. An example is:

01101001 = X
11010011 = Y
01000001 = X AND Y

Exclusive Or
The exclusive or (XOR) operation performed on two bits results in 1
only if just one of the bits is a 1. The four possible cases are:

0XOR0=0
0XOR 1=1
1XOR0=1
1XOR1=0

The truth table for the XOR operation of bits A and B is shown in Fig. 1-3
where you can see that A XOR B is true only if only A or only B is true.

A0 1
B
0 {01
1 11

Fig. 1-3 The XOR Operator Truth Table.

Exclusive oring two eight-bit groups is performed between pairs of
bits in the same bit position, as seen below:

01101001 = X
01011101 =Y
00110100 = X XOR Y

Boolean Algebra
The set of rules governing the use of logical operations is called




Boolean algebra. The logical operators AND, OR, and NOT and the numbers 0
and 1 are used in Boolean algebra. The operators' AND and OR are represented
with the symbols, A and Vv, respectively. Sometimes the AND symbol, A,

is not used at all; instead the two quantities are just written next to

each other. The new symbols and their usage are shown:

A ANDB=AAB=AB
AORB=AVB

The exclusive OR operation is indicated with the s symbol.
The basic rules of Boolean algebra using binary numbers are:

1) 0=1 2) 1=0
3) AAl=A 4) AvO0=A

5) AAA=A 6) AVA=A

7Y AAQ= 8) Avl=l
9) AAA=0 10) AVvA=1
11) A=A

A is a Boolean variable that can represent a bit; the double bar over the A
in rule 11 indicates that A has been complemented twice. Notice the pairs
of rules: 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 10. Given half of a
pair, the other half can be found by exchanging 0 and 1, and the
operators, V and A . For example:

7) A 0
\
1

0
\
1

AQ =
\
8) Avl =
The \ indicates copying down the opposite symbol. This is the principle of
duality, or rule 8 is the dual of rule 7.

The Boolean operations of A and Vv follow the laws of commutation,
association, and distribution. The commutative law states that the
result of an algebraic operation is independent of the order in which it is
performed. This is expressed as:

AvB=BVA
AAB=BAA

The associative law states that the result of a series of identical



operations is independent of the order in which it is performed:

AVBv(C) =(AVvB)vC
AABC)=(AB)AC

The operations within parentheses are performed first.

The distributative law states that the result of an algebraic operation
between a Boolean variable A and a group of variables equals the result of
the algebraic operation between the variable A and each variable within the
group. Below are two examples of this law:

Av(BAC =(AVvB)A(AV()
AABvVC)=(AAB V(AAQ)

By inspecting the above examples, you can see that each pair consists
of a Boolean expression and its dual. Here are the rest of the Boolean laws
or equalities:

12) AVAB=AVB 13) AA(AVB)=AAB
14) AvB =ABVAB 15) AVB=AAB
16) AAB=AVB

Rule 13 is the dual of 12, and 16 is the dual of 15. Rules 15 and 16 are
known as De Morgan’s law.

The rules and laws of Boolean algebra will be useful to help you
simplify complicated expressions, thereby reducing the amount of work you
and the computer must do. Here’s an example: you are in charge of putting a
toddler to bed. You have determined that the following facts and steps will
guide you in this chore.

A = the toddler is tired
B = it is the toddler’s bedtime
C = put the toddler to bed

After giving it careful thought, you have decided that you will put the
child to bed (C is true) under any of the following conditions: when he is
tired and it is not his bedtime, or when he is not tired and it is his
bedtime, or when he is tired and it is his bedtime. This can be represented
as:

C=(AAB)V(AAB)V(AAB)

The expression can be simplified by using the laws of Boolean algebra.



Using the associative law we arrive at:
C=ABVB)VAB
Using rules 10 and 3 the above equation reduces to:
C=AVAB
Then, applying rule 12 gives us the final equation:
C=AVB

We now see that the toddler should be put to bed if he is tired or if
it is his bed time. Had you programmed a computer to make this decision for
you, it would have been much more difficult for you to direct it to solve
the original equation, and the computer would have taken longer to find the
solution.

HEXADECIMAL NUMBERS

Most digital computers work with groups of eight bits, or multiples of
eight, i.e., 16, 24, 32, bits. A group of bits, inside the computer, is
composed of a group of electronic switches whereby the group as a whole can
be controlled or manipulated. A group of eight bits is known as a byte.
Generally, any group of bits controlled as a whole is called a word. The
word length is how many bits are in that group. So, a byte is an
eight-bit word. A 16-bit group is called a double byte, or a 16-bit word or
a word sixteen bits long. The Color Computer uses bytes and double bytes. A
byte and double byte are graphically shown in Fig. 1-4.

[ 7]6]5]4l3]2]1]0] byte(8—bit’word)

[15[14]13[i2[11]10]o]8]7]6]5]4[3]2[1]o] ~ double byte
(16-bit word)

Fig. 1-4 A byte and a double byte.

In Fig. 1-4 each box is numbered according to its bit position. A byte
can also be divided into two halves, and each half is called a nibble.
The nibble composed of bits 7 - 4 is the upper or most significant, and the
nibble composed of bits 3 -0 is the lower or least significant. A nibble
may also be considered to be a four-bit word. A 16-bit word is divided into
four nibbles, where the least significant is nibble 0 and the most



significant is nibble 3. Figure 1-5 illustrates how bytes and double bytes
are divided into nibbles.

7654321 0] a byte

/

upper nibble lower nibble

[1514131211109876543210] adouble byte

3 2 1 0 <= nibble number

Fig. 1-5 The locations of nibbles.

The decimal quantity of numbers that can be represented with a group
of bits is the decimal number of unique combinations of zeros and ones that
can be constructed within that group of bits. For a group of N bits there
are 2N unique combinations. That means that a nibble can represent one of
16 (2%) decimal numbers, a byte can represent one of 256 (2%) decimal
numbers, and a double byte can represent one of 65,536 (216) decimal
numbers. Also, if a group of bits is expanded to include one more bit, the
quantity of numbers it can represent is doubled.

So far we have been writing in binary to represent binary numbers, but
if we were to write very large numbers or a lot of smaller numbers, the
strings of zeroes and ones would become quite long and cumbersome. There is
a shorthand method to represent binary numbers, but it entails the use of
another numbering system. This is the hexadecimal number system, whose
base is 16 and is composed of 16 digits. Table 1-4 lists the 16 hexadecimal
digits and their equivalent binary and decimal values. You should memorize
this table.

Converting Binary To Hexadecimal
To convert a binary number to a hexadecimal number, let each nibble be
represented by its hexadecimal equivalent digit. Some examples are:

0010 1010 binary byte
2 A = 2A,, hexadecimal

0011 1111 0110 1100 binary double byte
3 F 6 C =3F6Cy, hexadecimal



Notice that the hexadecimal representation is much more compact.

Binary | Decimal | Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Table 1-4 Hexadecimal, Binary, and Decimal Numbers.

Converting Hexadecimal To Binary

To convert hexadecimal to binary, just reverse the above procedure.
Replace each hexadecimal digit with its equivalent four-bit binary code
from Table 1-4. Examples of this are:

2 A hexadecimal
0010 1010 - binary byte

D A 1 7 hexadecimal
1101 1010 0001 0111 binary double byte

Converting Hexadecimal To Decimal

To convert hexadecimal to decimal, one could first convert to binary,
as above, and then convert from binary to decimal. One could also convert
directly from hexadecimal to decimal by summing the products of each
digit’s decimal value and the decimal weight of its digit position. The
decimal value of each digit can be determined from Table 1-4. The decimal
weight of each digit position is 16 raised to the power of the digit
position. The digit positions are: ...3 2 1 0. The decimal weight of
each digit position is: ... 163 16% 16 16°% or: ... 4096
256 16 1. Examples of converting from hexadecimal to decimal are:



1WC=(7x16)+(12x1) =124,
F2=(15x16)+(2x1)=242,
31A2 = (3x4096) + (1x256) + (10x16) + (2x1) =12706,,

Changing The Base
A generalized technique exists for converting a number in any base to
a number in any other base. A number N in base x may be converted to base y
by a series of divisions of N by y, with the division performed in base x.
The remainders from the divisions will be the digits of the number in base

y.
y AN
y

;\_IN
v\ N

> > P>

The remainders A., which must be smaller than y, are the digits of the
converted number as follows: . . . A2 A1 Ao' As an example, let us
convert 688, to hexadecimal.

6 \_688 remainders
16 \ 0
16 \ 11 = B (from Table 1-4)
0 2

therefore 68810 = 2B016

In the above example, 688 divided by 16 is 43, with a remainder of 0, 43
divided by 16 is 2, with a remainder of 11, and 2 divided by 16 is 0, with
a remainder of 2.

Arithmetic Operations

The normal arithmetic operations of addition, subtraction,
multiplication, and division can be done with hexadecimal numbers, though
the operations are more cumbersome because the base is 16. The same
technique of adding numbers is used. When performing hexidecimal addition,
a carry is generated when the sum of a column of digits is equal to or
greater than 16, decimal. The total of the column generating the carry is
then reduced by 16, the base. Some examples are:

o DO
—

i » o

1A84
+ 23E2
3E66



The subtraction process is performed like that described for decimal
and binary numbers. When a borrow is generated, remember to add 16 to the
digit being subtracted from in the column that generated the borrow. Also,
decrement the digit being borrowed from. Two examples are:

b
33 2
05

2E

;_.oo:[>c‘
~ | W

C
7
5

You can check the results of hexadecimal arithmetic by converting the
examples to binary and performing the operations again.



CHAPTER 2

Memory and Data Representation

We have learned how to manipulate bytes of data; but where do the
bytes come from, and where are the results of manipulation stored?

MEMORY

Bytes of data for immediate or near term use are stored in the random
access memory, or RAM. The memory is called random access because any
byte stored in it is just as accessible as any other byte. The memory is a
major subunit of a digital computer, and is usually made up of thousands of
electronic circuits. Because electronic circuits don’t work without
electrical power, all bytes stored in memory are lost when power is turned
off, even if only momentarily. A memory in which data storage depends on
the presence of power is said to be volatile. Fig. 2-1 is a simplified
block diagram of a microcomputer, depicting two major subunits, the
microprocessing unit, or MPU, and the random access memory. The MPU
is the section of the computer that performs the arithmetic and logical
operations on the bytes of data.

MPU data flow > MEMORY

| 4

Fig. 2-1 A Simplified Microcomputer Block Diagram.



The two operations the memory is capable of are storing and
reading. The store, or write, operation is the process of putting a
byte into memory where it will be retained until it is replaced. The read,
or fetch, operation is the process of extracting a byte from memory. A
typical sequence of operations would be: the MPU reads a byte from memory,
performs an arithmetic operation on that byte, and then stores the
resultant byte in memory.

We have seen that bytes can be stored in and read from memory, but we
need also to know where in memory the byte will be stored or read. Let’s
learn how the memory is organized: conceive of the memory as composed of
cells, in each of which one and only one byte can be stored. To
differentiate one cell from another, all the cells are numbered from 0 to
N-1 where the memory contains N cells. Fig. 2-2 depicts a memory of 16
cells where the cells are numbered from 0 to F, hexadecimal.

0 1 2 3

4 5 6 7

g |9 A B

C D |E F

~Fig.-2-2 A Memory with Hexadecimal Addresses.

The memory in Fig. 2-2 is drawn for convenience as a square with four -
cells on a side. When performing a read or write operation one must specify
the number. of the cell the computer should access. This number of each cell
is called its address or location. For example, one could-store a byte
in address one (cell number one), or store a double byte in addresses four
and five, where the most significant byte -would be put in.address four and
the least significant byte in address five. An example of memory usage
would be to read a byte from address 5,4, manipulate -that byte, and
storing the resulting byte in address By,

Whatever byte is stored at an address is currently the contents of
that address. When a byte is read from an address, the content is not
changed. This is analogous to playing a cassette tape; after listening to a
" cassette tape, whatever was recorded on the tape has not been changed.
Writing puts a new byte in the specified cell and destroys its previous
contents. ,

Let’s turn on the Color Computer and experiment with writing to and
reading from memory. The BASIC command for writing into memory is
POKE X,Y where X is the decimal number or expression of the address and Y
is the decimal value or expression of the byte to be stored. Type the




following command:
POKE 3000,185 (ENTER)

(ENTER) indicates that the ENTER key must be depressed. All the following
type-in examples require the ENTER key to be depressed.

You have just stored a straight binary byte of decimal value 185 in
decimal address 3000. The BASIC function for reading the content of a
memory address is PEEK (Z), where Z is the decimal number or expression of
the address to be read. Let’s read and print the location we have just
written to. Type the following command:

PRINT PEEK(3000)

You will see the value of the byte in address 3000 printed on the
screen, that is, the 185 we previously stored there. BASIC is designed to
work with decimal numbers, but we can indicate that a number is hexadecimal
by preceding it with &H. The hexadecimal number equivalent to decimal 3000
is BBS8. You can check this with one of the conversion techniques covered in
Chapter 1. We can read and print the content of the original address by
typing:

PRINT PEEK(&HBBS)

You will see 185 printed, the value we originally stored in the

address. To have the values printed in hexadecimal, the variable to be
printed must be modified with the HEX$ function, as below:

~PRINT HEX$(PEEK (&HBBS))
This will print B9 as the hexadecimal value of the byte at address BB8.
Convert B9 to decimal and you will see it is equal to 185. A more compact
way of indicating a hexadecimal number in text is to prefix the number with
a dollar sign ($). Let’s store $C2 at address $1000:

POKE &H1000,&HC2

To read and print the contents of address $1000, type:

PRINT HEXS$(PEEK(&HI1000))

This prints C2, the hexadecimal value of the byte we stored at address
$1000. The PRINT HEXS$ command has a fault, demonstrated as follows:

POKE &H1000,&HOF



This stores a byte of $OF at $1000. Now print the content by typing:
PRINT HEXS$(PEEK(&H1000))

You will see F is printed instead of OF. The PRINT HEX$ command does not
print leading zeros.

Experiment more by yourself, but be sure to use addresses larger than
$600, because BASIC itself uses the addresses below this. If you try to
store a decimal value larger than 255 or less than zero, you will get an FC
error message because the value is outside the range that can be
represented in one byte in straight binary.

More About Memories

When someone asks how much memory your computer has, he is actually
asking how many cells or addresses its memory has. Your response could be
the number of cells in decimal, such as 16,384. You might also answer 16K,
where one K is 1024 decimal. Notice that 1024 is the decimal weight of ‘the
bit position ten. So 16K is:

16K =16 x 1024 =16384

The maximun amount of memory the Color. Computer can work with is 64K, or
65,536 memory locations. These addresses are numbered from 0 - 65,535 in
decunal or from 0000 - FFFF in hexadecimal. Notice that it takes exactly

two bytes to represent the address. ‘

Read Only Memory

Another type of memory is known as read only memory or ROM. One can
not alter the contents of read only memory. A ROM has specific data stored,
at the time of its manufacture, in each of its locations that can not be . -
changed; one can only read from this type of memory.In the Color Computer
the internal ROM occupies ‘addresses $8000 - $BFFE. This ROM contains Color
BASIC and Extended Color BASIC, the programs that interpret and execute
your BASIC program’s statements, Verify that this is indeed read only
memory by reading the content of an address in ROM and trying to store
another value in its place. A demonstration using BASIC PEEK and POKE
commands is:

PRINT PEEK(&HS5000)

132 (observe original value)
POKE &H9000,92 (try to change it)
PRINT PEEK(&H9000)

132 (observe it was not changed);

Addresses above $BFFF are reserved for use by plug-in ROM packs such as



games, EDTASM+, or a disk controller.

A diagram depicting the memory addresses, their use, and memory type
can be seen in Fig. 2-3. This diagram is known as a memory map; it shows
how memory is organized and used. Memory locations $0000 - $7FFF of a 32K
($0000 - $4FFF for 16K) Color Computer are RAM. As we learn more we will be
able to add detail to this map by indicating what some of the addresses are
used for.

Decimal Hexadecimal | -~ Memory
Address Address Type
0 0000
RAM
16383 4FFF
RAM
32767 7FFF
32768 8000
Internal
ROM
49151 BFFF
49152 C000
External
ROM
65535 FFFF

Fig. 2-3 A Memory Map of the Color Computer.

DATA REPRESENTATION

We can represent a number with a byte or a double byte using straight
binary or signed binary. A computer memory is capable of storing thousands
of bytes representing different types of data. Many conventions exist
concerning how data should be represented and stored in memory. Each
convention has strong points and weak points, making it useful or not for a
particular situation.




Straight Binary
Straight binary lets us represent only positive integers. As you know,

one byte in straight binary can'represent decimal integers from 0 - 255. To
represent larger numbers, more bytes must be used. For instance, two bytes
can represent decimal integers from 0 - 65535. Suppose we had measured the
daily wind speed, in integer miles per hour, and wanted to store the speed
in memory. One byte in straight binary would represent the wind speed for
one day, since the speeds would be within the permissible range and would
never be negative. The data bytes would be stored in sequential memory
locations - that is the first day’s wind speed would be stored at address
1000, the second day’s speed at address 1001, the third day’s speed at
address 1002, and so on. Sequentially stored bytes are typically depicted
as below:

1000 07 12 03 05

1004 12 17 08 06

Each row is preceded by the address in which the first byte is stored. The
second byte is stored in the next higher address, and each succeeding byte
is stored in the next sequentially higher address. In our example, the
first day’s wind speed is 7 miles per hour, stored at address 1000; the
second day’s speed is 12, stored at address 1001, the third day’s speed is
3, stored at address 1002, and so on. There is no rule saying how many
addresses would be in each row; normally, the length of a row would be such
that it made sense or was easy to read. In fact, the above example should
probably have had seven addresses in each row so each row would correspond
to a week.

If a number is so large that two bytes are required to represent it,
the two bytes would be stored in two consecutive addresses, the most
significant byte at address N and the least significant byte at address
N+1. If three bytes were required they would be stored in three consecutive
addresses. A two byte value ($1C27) and a three byte value ($023A1B) are
shown stored in memory below:

2000 1C 27
2002 02 3A 1B

The straight binary technique uses the least amount of memory to store
numbers, because all the bits are used to determine the ‘value of a number,
and none are used to indicate the sign or where the radix point is. Also, a
program that uses straight binary values will execute, or run, faster
because the quantities are in the form the MPU most readily works with and
the least number of memory addresses have to:-be read.

Signed Binary
Signed binary has an advantage over straight binary because it can



represent negative integers. One byte can represent any decimal integer

from -128 - +127. Two bytes can represent any decimal integer from -32768 -
+32767. A signed binary byte can be stored anywhere in memory, or a series
of bytes can be stored in consecutive memory locations. A number
represented by two or more bytes is stored in memory by putting the most
significant byte at address N and the next most significant bytes at

addresses N+1, N+2, etc. This can be shown as:

1000 FF FC
1002 00 12

Decimal -4 is represented by two bytes stored at addresses 1000 and 1001,
and a decimal +18 is represented by two bytes stored at addresses 1002 and
1003.
Remember that the most significant bit is the sign bit; if it is set

the number is negative, and if it is clear the number is positive. A number
represented by one byte can be represented by two or more bytes by using
the process of sign extension. This is done by repeating the sign bit in
all the bits of the new bytes prefixed to the original byte. Two examples
are:

A3 (-93;,,) = FFA3 (-93,))

6C  (+108,,) => 006C (+108,,)

The bytes are shown in hexadecimal.

As in straight binary, signed binary lets you pack nearly the most
data into the least amount of memory. An added plus is the ability to
represent negative numbers.

Binary Coded Decimal

Sometimes it is desirable to use and manipulate decimal numbers in the
computer. This can be done using binary coded decimal, or BCD,
where a decimal digit is represented by the four bits in a half byte or
nibble. The first ten hexadecimal numbers, 0 - 9, are considered to be
decimal digits and the other numbers, A - F, are not allowed. In BCD a byte
can represent two decimal digits, or N bytes can represent 2xN decimal
digits. Some examples of BCD are:

Byte => BCD Value

73 73
12 12
0389 389
1C77 not a valid BCD number

The bytes are stored in memory as before, the most significant byte at
address N and the next most significant bytes at addresses N+1, N+2, etc:



1020 02 19
1030 .00 52 01

A double byte representing decimal 219 is stored at 1020 and 1021, and a
triple byte representing decimal 9201 is stored at 1030, 1031, and 1032.
The technique of using each nibble to portray a decimal digit is also
called packed BCD. As you can see, only positive whole numbers can be
represented with BCD as we know it so far.

The arithmetic operations of addition and subtraction can be performed
on BCD numbers. For addition, a microcomputer simply adds the two numbers
together as though they were straight binary.

72
+ 25
97

-+
Wi o
0o |~ —

0
4
4

o o

‘Sometimes adding two BCD digits will result in an illegal digit, that is,
one of the six unused hexadecimal digits of A - F. To correct this, six is
added to the illegal digit, and any generated carry is added to the next
digit to the left. Two examples follow:

2.8 1073
+ 17 + 2055
3F 30C38
+ 6 + 6
45 3128

You can see that the final results are the sums of the decimal numbers.

A microcomputer will perform BCD subtraction by doing a straight
binary subtract or we can do it on paper using hexadecimal subtraction.
Again, the result of subtraction may generate an illegal BCD digit. This
digit is corrected by subtracting six from it. This correcting process can
be below.

b b

73 2376
- 05 - 1755

6 E 0C21
-6 -6

68 0621

The process of correcting illegal BCD digits after adding or subtracting is
known as decimal adjust.

Often the number of digits making up a BCD number may not be known.
Thus, it is not known how many bytes to read from memory to assemble the
complete number. It would also be helpful to be able to assign a sign to a



number, and to have a decimal point. These items can be included in a BCD
number at the expense of using more memory cells. This can be done as seen
below:

SS PP DD DD DD DD EE

where the first byte, on the left, (SS) would indicate the sign (say a 00

for positive and a 01 for negative) and the second byte (PP) would contain
a count of decimal digits to skip, going left to right, to place the

decimal point. These two bytes are followed by the BCD digits (D) and an
end code (EE). An example of this as stored in memory is:

2000 01 0529 21 44 30 EE = -29214.43

The advantage of this technique, called expanded BCD, is the ability to

store an exact copy of any decimal number in memory. Two disadvantages are
that BCD uses a lot of memory to store a number, and that programs using
BCD numbers execute more slowly because of the larger number of bytes that
must be read and manipulated.

Fixed Point Representation

The numeric representation techniques of straight binary, signed
binary, and packed BCD are only capable of representing integers, except
that signed binary can also indicate the sign. You have probably considered
a group of integers to be a whole number, even though no decimal or radix
point was indicated. You assumed the radix point was understood to be at
the far right of the group of integers.

One could, however, fix the radix point at any desired position in a
field of digits. After storing the data as a string of integers in memory,
and later retrieving it, the radix point could be reinserted in-its
position. Suppose you wanted to store the daily rainfall amount in memory
using packed BCD. You could construct a field of digits such as XX.YY,
where XX is inches of rainfall and YY is hundredths of inches of rainfall.
The integer group XXYY would then be stored in memory. On retrieving this
group of integers the decimal point would be reinserted to give XX.YY. This
technique of fixing and remembering the position of the radix point is
known as fixed point representation. The arithmetic operations
performed with straight binary, signed binary, and BCD are also known as
fixed point arithmetic. .

The advantage of fixed point operations is that results can be exactly
correct, assuming enough bytes are used so an overflow condition does not
occur. A disadvantage exists when one uses fixed point representation to
portray a numeric variable with a large or very large range, for example,
the count of bacteria in a quart of water. This count could range from zero
to several million. To store this variable in memory using BCD, one would
have to designate a field of four bytes to hold eight decimal digits. Some




typical bacteria counts stored in memory might look like this:

2000 00 01 79 20
2004 = 01 10 27 36
2008 00 00 01 42

As you can see, the bacteria count of 1,102,736 at address 2004 uses all
the available bytes, but the lower valued counts do not use all the
reserved bytes. The bytes containing leading zeros or trailing zeros are
wasted.

Floating Point Representation

Often a number or a result of a calculation need not be exactly
correct. The quantities need be accurate only to so many decimal places,
depending on the amount of accuracy required. For instance, calculations
involved in building a bridge may not need to be any more accurate than a
tenth of an inch, because the wind or ground settling will cause
distortions of greater than a tenth of an inch. The technique used by
digital computers to represent numbers to a certain accuracy is called
binary floating point. The advantage of binary floating point is it
can represent a large range of numbers with a fixed number of bytes.

First let’s review decimal floating point, also known as exponential
or scientific notation. A floating point number is written in the
form: ‘

+/- N.NNN... x 10+/°E

where its value is equal to the number N.NNN... multiplied times 10 raised
to the power of E. The number N.NNN... is the mantissa and the exponent,
E, is the characteristic, or simply, the exponent. Any decimal number
that can be represented as a string of digits and an appropriately placed
decimal point can also be represented with decimal floating point. Some
examples of fixed point decimal numbers and their floating point
equivalents are:
+12=12x 10!
- 542.7 = - 5.427 x 102
+.000678 = + 6.78 x 107*

In the first example we can see that 12 is indeed equal to 1.2 times 10
(10%). In the examples the mantissas have been normalized or adjusted

so their value is greater than or equal to one and less than ten. The
mantissa is normalized according to convention. It is the job of the
exponent to indicate the general magnitude of the number. The mantissa
determines the accuracy, dependent on the number of decimal places in it.
The sign of decimal floating point is simply indicated with a plus or minus
sign to the left of the mantissa.




Binary floating point is written in the form:
+/- NNN... * 2*/-E

where the mantissa .NNN... is a binary number normalized so the bit to the
right of the radix, or binary point is always 1. The value is found by
multiplying the mantissa by 2 raised to the power of E. Some examples of
finding the binary value of binary floating point numbers are:

110x23 = .110x8,, = .110x1000, =110,
1011x27% = .1011x1/4,, = .1011x.01, =.001011
1001x2% = .1001x32,, = .1001x100000, =10010.

A fixed point binary value can also be found by moving the binary point of
the mantissa to the right if the exponent is positive, or to the left if
the exponent is negative. The number of bit positions to move it is the
magnitude of the exponent. What was the mantissa will be the binary value.
Try the above examples using this technique.

Shifting the binary point can also be used in reverse to convert a
fixed point binary value to floating point. Given a fixed point binary
number, shift the binary point so the result is normalized; that is, the
leftmost 1 bit is just to the right of the binary point. The number now is
the mantissa. The exponent is the number of bit positions the binary point
was shifted. The sign of the exponent is plus if the binary point was
shifted to the left, or minus if to the right. An example of this
conversion process is:

1) .Given 1010.
Mantissa = .1010 (binary pointt
shifted left 4 positions)
Exponent = 4 (number of shifts)
Sign of exponent = + (left shift)
Therefore, 1010. = .1010 x 2+*

Now we need to be able to store floating point in memory. One way would
be to reserve three bytes for each number. The most significant byte would
contain the exponent(EE) in signed binary to accommodate positive or
negative exponents. The next two bytes could contain the normalized
mantissa (NNNN) in straight binary where the binary point is always at the
far left. For example, this could be stored in memory at addresses 1000,

1001, and 1002 as:
1000 EE NN NN

A specific number could be stored in memory as:



The floating point number = .11011 x 277

The mantissa .11011 = D8 00

The exponent = F9 (two’s complement of decimal 7)
So, at 1000: F9 D8 00

The limitation of this example is that only positive binary floating point
numbers can be represented.

The degree of accuracy of a floating point number depends on the number
of digit positions in the mantissa. In the last example there are two
bytes, meaning that the accuracy is limited to about one in 65536 or .0015
percent. This is because the mantissa is composed of sixteen bits, within
which a decimal number from 0 - 65535 can be represented. The accuracy can
be increased or decreased by respectively increasing or decreasing the
number of bytes reserved for the mantissa. The range of the magnitude is
determined by the possible range of the exponent. In the example the
exponent could range from -128 - +127. This is approximately equivalent to
a decimal range of 10%8 to 10728, If more or fewer bits were reserved
for the exponent, the range would be more or less.

Character Representation

The alphabetical characters are also stored, manipulated, transmitted,
and printed by computers. These characters include the alphabet - upper-
and lowercase forms; punctuation marks; numeric symbols; and special
characters such as #, <, and ]. Two standardized codes for internally
representing characters have been adopted. One is EBCDIC, the Extended
Binary Coded Decimal Interchange Code, which is primarily used in larger
computers. EBCDIC is an eight-bit, or one byte, code that allows the
representation of up to 256 different characters. The other code is
ASCII, the American Standard Code for Information Interchange, the code
used by most microcomputers. ASCII is a seven-bit code by which up to 127
different characters can be represented. The seven-bit code is implemented
using the seven less significant bits in a byte as seen below:

[776 54321 0] a byte
| J

N
7-bit ASCII code

Bit 7 is not used, In most cases it will be clear. Appendix D shows all
the characters and their ASCII codes in hexadecimal.

To find the ASCII code of a character, M for example, locate M in
Appendix D. The least significant four bits is the hexadecimal digit at the
left of that row and the most significant three bits is the hexadecimal
digit at the top of that column. This gives the ASCII code for M as $4D.
The two leftmost columns of characters in Appendix D are control codes.
The control codes are not printable but are used to control an external



device that data is being sent to. For example, the control codes FF (form
feed) and CR (carriage return) would be used when sending data to a
printer. (All the control codes are listed in more detail in Appendix D.)

Character representations are stored in memory as a series of bytes,
each byte containing the ASCII code of a character. An illustration of
characters stored in memory at sequential addresses $2000 through $2014
follows. This example can be decoded by using Appendix D.

2000 54 68 69 73 20 69 73 20
2008 41 53 43 49 49 20 65 6E
2010 63 6F 64 65 64

DATA STRUCTURES

When storing large amounts of data in memory, it must be organized in
some way. Organization methods have been developed to help keep track of
where the data is and to facilitate its use. Each method has limitations
and advantages. The use of data organization methods in memory is the basis
of data structures. Normally data are stored in groups where all the
data in one group are of the same type. For example, one group may be
composed of wind speeds at a certain geographic location and another group
may be composed of wind speeds at another geographic location. The
individual wind speeds are the elements of that group. If the elements
are not in any particular order in the group, then that group is a block
of data.

Tables

A table, or list, is a group of the same type and same length
elements where the elements are stored in some order in sequential memory
locations. An example would be a table of wind speeds for a year at your
house. Each element would represent the wind speed for one day and be
composed of one byte. The first element of the table is the wind speed for
January first, the second is the wind speed for January second, etc. Here
the order is chronological, but it could be alphabetical or numerical.
Since each element of the example is composed of one byte, the first
element would be at the first memory address of the table and the second
element would be at the second memory address, etc. The table can be
represented as:

5000 EO El E2 E3
5004 E4 E5 E6 E7

The table starts at address $5000 and each element is denoted by EX, (X
indicates the element number).




The starting address of, or pointer to, the table must be known. The
programmer knows the pointer value when the table is first being built, but
the pointer must be saved so the table can be accessed later. It is also a
good idea to note the length of the table, or its ending address, and how
many bytes each element uses. This information can be stored at the very
beginning of a table, before the data elements. One way would be to store
the number of elements in the first byte of the table and to store the
number of bytes each element uses in the second byte. Immediately following
this would be the elements. Upon initially accessing a table, the number of
elements and the length of each element would be read. The user could then
calculate the address of any element, and the last address of the table.

The address of any element(X), where the elements are numbered starting
with zero, is found with the following equation:

X = element number
L = number of bytes in a element
element address = pointer +2 + ( X x L)

where 2 is the number of bytes at the beginning of the table that contain
the number of elements and number of bytes in an element. The last address
used by the table is found through the following equation:

N = number of elements in table
L = number of bytes in a element
last address = pointer + 1 + (N +1 ) x L

A table of seven elements with each element three bytes long is
illustrated in Fig. 2-4. The pointer is the value $4300, the starting
address of the table. Knowing the pointer value, the number of elements,
and the number of bytes in each element, the address of any element can be
found. The address of the first element, element 0, can be found as
follows:

pointer = $4300 N =17
L=3 X = element number

address of element #0 = pointer +2 + ( X x L)
=4300+2+(0x3)
= 4302

You should be able to use this equation to find the address of any element
in the table and then double check it against Fig. 2-4. You should also be
able to determine the last address used by this table. Remember when doing
the arithmetic that the numbers are hexadecimal.




ele #0 ele #1
4300 NN LL : Toonoon
ele #2 ele #3 ele #4
4308 . ™ .. .o . s
ele #5 ele #6
4310 . . .. o .

Fig. 2-4 A Table in Memory.

Linking Tables

Next we need to know how to use two or more of the same type of tables
residing in memory concurrently. A pointer for each table would allow
access to any of the tables in any order. Often tables would be read or
used in a specific order; take the case of three annual tables of daily
rainfall in Boston. There could be a table of the rainfall for the year
1980, the year 1981, and the year 1982. After scanning a table in
chronological order, one would have to go back and find the pointer for the
next year’s table. This process could be simplified if the tables were
somehow linked. The tables can be linked by placing the pointer to the
next table at the end of the current table, this is illustrated in Fig.

2-5.
table data table data
1980 ﬁ 1982
rainfall table data rainfall
table table
1981
pointer rainfall pointer
table j
pointer

Fig. 2-5 Linked Tables.

In Fig. 2-5 each table is made up of three components: the table data
which gives the number of bytes in each element and the number of elements
in that table; the body of elements; and a pointer which is the address of
the next table. The pointer of the very last table would have to contain a
unique code, such as $FFFF, to indicate there are no more tables. That
pointer could also point back to the first table, resulting in a set of



circularly linked tables. The linkage in Fig. 2-5 can be made circular by
drawing an arrow from the pointer of the last table to the top of the first
table. Circularly linked tables would be used when repetitively searching
the tables for certain elements.

Tables can be doubly linked to allow reading either forward or
backward. This would require another pointer in each table, to the address
of the previoﬁ‘s\table, as seen in Fig. 2-6.

pointer > pointer pointer

table data table data table data
table #1 table #2 table #3
pointer pointer pointer

Fig. 2-6 Doubly Linked Tables.

The backward pointer of the first table should contain a unique code,
such as a $0000, to indicate there are no tables previous to it. Doubly
linked tables can also be circularly linked.

Directories

If we were working with a number of related tables, such as rainfall,
snowfall, and wind speed, an aditional technique is needed to keep track of
them. A directory is used; the directory is a table of pointers to the
related tables. In Fig. 2-7, the directory is composed of three elements:
the three pointers to the to the Boston weather tables.

Boston
rain
table

Boston directory

rain pointer Boston

snow pointer | =——————p | SNOW

wind pointer table

Boston
wind
table

Fig. 2-7 A Single Level Directory.



Were weather tables available for many cities, Fig. 2-7 would be expanded
to include a directory of cities to point to each city’s directory. Two

levels of directories can be seen in Fig. 2-8. This system of directories
pointing to sub-directories is called a tree directory.

Boston directory

rain pointer
snow pointer
wind pointer

City directory N.Y.C. directory
Boston pointer rain pointer
N.Y.C. pointer ~——————— | snow pointer
San Diego pointer wind pointer

San Diego directory

rain pointer
snow pointer
wind directory

Fig. 2-8 A Two Level Directory.

Directories are also used to keep track of where information is stored
on a disk. In fact, the most important table stored on a disk is the disk
directory.

Queues

Another method of organization is a queue. A queue is composed of a
list of elements in sequential memory locations and a pointer to the next
element to be read. One type of queue is the first-in-first-out or
FIFO. A FIFO queue is analogous to a waiting line: the first person in
the line is the first to be served. In a FIFO queue the first, or oldest,
element is found by a pointer that contains that element’s address. After
the first element is processed the pointer is directed to the next oldest
element in the queue.

Another type of queue is the last-in-first-out, or LIFO. This is
analogous to a stack of blocks where the first block into the stack is at
the bottom and the most recent block put on the stack is at the top of the
stack. In fact, a LIFO queue is also known as a stack. When removing
blocks from the stack, the first lifted off is the top and most recently



added block. A LIFO queue is organized as elements stored in sequential
memory locations. A pointer contains the address of the most recently added
element. After that element is read, or taken off the stack, the pointer is
changed to point to the next most recently added element. To add an element
to a stack is to push it onto the stack, and to retrieve an element from

a stack is to pull or pop it off the stack.

EXTENDED COLOR BASIC DATA FORMATS

Extended Color BASIC can work with numeric and string, or text,
variables. The computer has an internal format for these variables and an
organizational scheme for storing them in memory. To write assembly
language programs using BASIC variables, we need to know their location and
format.

To find were BASIC has stored a variable that variable’s pointer must
be found. The pointer to variable X is found with the VARPTR(X) BASIC
function. However, before the pointer can be found the variable must have
been previously used or established by BASIC. The following commands will
produce the pointer of variable X:

X = 1234
PRINT VARPTR(X)

The displayed value will be a decimal address. Remember that the numeric
values BASIC accepts or prints are normally decimal. The value of a pointer
can also be assigned to another variable. This can be done with the
following commands:

X = 1234
A = VARPTR(X)
PRINT A

Numeric Variables

A variable’s value is represented in five bytes in binary floating
point format. The pointer of a numeric variable, obtained by using the
VARPTR function, will be the decimal address of the first byte. The binary
floating point numbers used by Extended Color BASIC have a normalized
mantissa composed of 32 bits, or four bytes. The floating point number can
be written as:

+/- BBBBBBBB * 2*/°E
where each B represents a nibble. The two quantities that completely

describe the floating point number are the mantissa and the exponent. The
quantities are stored in five bytes in sequential memory locations:



EE BB BB BB BB

The first byte contains the exponent and the last four bytes contain the
mantissa.

The exponent, which can be either positive or negative, is encoded in
the first byte with a modified binary representation. The decimal value of
the exponent is found by subtracting a decimal 128 from the decimal value
of the exponent byte. Thus, if the decimal value of the exponent byte is
greater than 128, the exponent is positive, and if the value is less than
128, the exponent is negative. Of course, if the exponent byte’s value is
128, the exponent is zero. Some examples are:

Exponent byte=A2,.=162,,
so exponent = 162-128 = +34, .

Exponent byte =56,,=86,,
so exponent = 86-128 = -42, .

The hexadecimal value of the exponent can be found by subtracting $80 from
the hexadecimal value of the exponent byte. An example of the hexadecimal
calculations can be seen below:

Exponent byte = $88,
so exponent = $88 - $80 = +38

The exponent is positive if the MSB of the exponent byte is set, and
negative if it is not set. The exponent byte of a value of zero is reserved
for a special purpose. If the exponent byte is zero, the number as a whole
is considered to be zero.

The four bytes representing the mantissa are in another modified binary
format. The sign of the mantissa is indicated by the MSB of the most
significant byte. If that bit is set, the mantissa is negative, and if it
is clear, the mantissa is positive. Considering that the mantissa is
normalized, the first bit to the right of the binary point is always set.
Since this is so, that bit can always be assumed to be set and it does not
have to be explicitly represented in the four byte code of the mantissa.
The remaining bits, to the right of the sign bit correspond to the bits to
the right of the always set bit of a normalized mantissa. An example of
decoding the hexadecimal four-byte mantissa field into the actual binary
mantissa is:

4 bytes = 03 41 01 00
binary code = 0000 0011 0100 0001 0000 0001 0000 0000

\
mantissa = + .1000 0011 0100 0001 0000 0001 0000 0000




where the underlined .1 is always assumed to be there and the bits from the
binary code, after the sign bit, are copied behind it. Now a whole floating
point number can be decoded from the format used by Extended Color BASIC.
An example follows:

5-byte code is 83 C4 20 00 00
the exponent = 83 - 80 = +3
the mantissa is found as:
C4 20 00 00
1100 0100 0010 0000 0000 0000 -0000 0000
\
-.1100 0100 0010 0000 0000 0000 0000 0000
the whole floating point number is;
-.1100 0100 0010 0000 0000 0000 0000 0000 x 2+3

The binary value can be found by multiplying the mantissa by 2*2 or by
using the technique of shifting the binary point, resulting

in: -110.00100001, where the trailing zeros have been dropped. You should
be able to convert this to decimal.

String Variables

A string variable exists in memory as a sequence of codes representing
a sequence of characters. Each code occupies one byte. The code used is
ASCII, except for a few special.characters. The following BASIC program
will print many of the text characters and their codes.

10 CLS:X=32
20 FOR K=0 TO 5 ; ;
30 PRINT HEX$(X+16*¥K);" ";CHRS(X+16*K);" ";
40 NEXT K -
50 X=X+1
.60 IF X<48 THEN PRINT:GOTO 20
70 GOTO 70

This program will put six pairs of columns on the screen. The left
column of ‘a pair is the hexadecimal code and the right column is the
character. (A complete listing of the text characters and their codes can
be found in Appendix C.)

The pointer, given by the VARPTR function of a string variable, is the
decimal address of the first byte of the string descriptor. (Remember
that the string variable must have been previously used by the BASIC
program.) The string descriptor is a group of five consecutive bytes in
memory that describe a particular string. The first byte contains the
number of characters in the string in straight binary. The third and fourth
bytes contain the address of the first byte of the string. The second and



fifth bytes are used by BASIC and should not be changed. A diagram of the
string descriptor is:

NN XX AA AA XX,

The NN byte contains the length of the string, and AAAA is the starting
address of the string. You can use the PEEK function to inspect the string
descriptor or the string itself at address AAAA.

Numeric Variable Arrays

Extended Color BASIC can use single dimension arrays, A(X), two
dimension arrays, A(X,Y), and three dimension arrays, A(X,Y,Z). Each
element of an array is a numeric variable stored in memory just like a
regular numeric variable, that is, as a five-byte binary floating point
number.

The pointer to the first byte of an array element is obtained by using
the YVARPTR function. However, the pointer to the first element of an array
is the value given by VARPTR plus seven. For a single dimension array that
has already been dimensioned via the DIM command, the pointer can be found
as seen below: :

10 DIM A(9)
20 P = VARPTR(A(0)) + 7
30 P2 = VARPTR(A(2))

P equals the starting address of element ( or the whole array. P2 is the
starting address of element 2.

Each numeric variable of a single dimension array will occupy five
consecutive memory locations. The next variable follows immediately after
each variable. A single dimension numeric array is arranged in memory
starting at address P as seen below:

P A(0)
P+5  AQ1)
P2 = P+A . A(2)

The pointers to the elements of a two dimension array are found- as
follows: ,

10 DIM A(2,2)

20 P = YVARPTR(A(0,0)) + 7

30 P2 = VARPTR(A(2,0))

In the two dimension array, A(2,2) for example, elements are arranged in




memory as follows:

P A(0,0)
P+5  A(1,0)

P2 = P+A  A(2,0)
P+F  A(0,1)
P+14  A(1,1)
P+19  A(2,1)

P+1E  A(0,2)
P+23  A(1,2)
P+28  A(2,2)

The pointers to elements of a three dimension array are found as follows.

10 DIM A(1,1,1)
20 P = VARPTR(A(0,0,0)) +7
30 P4 = VARPTR(A(0,0,1))

The elements of array A(1,1,1) are arranged in memory starting at address P
as follows:

P A(0,0,0)
P+5  A(1,0,0)
P+A  A(0,1,0)
P+F  A(1,1,0)
P4 = P+14  A(0,0,1)
P+19  A(1,0,1)
P+1E  A(0,1,1)
P+23  A(1,1,1)

String Variable Arrays

String variable arrays of single, two, and three dimensions are also
available. The string elements of an array are arranged in an orderly
fashion in memory, but because strings may be of different lengths, it is
not easy to calculate the address of any other string by knowing the
address of just the first string element. It is best to find the pointer to
the string of concern.

The pointer to a string in an array is found like that of a string
variable. First all the string elements of the string array must have been
used by the BASIC program. Using them establishes their position in memory.
The value given by the VARPTR function is the address of the string
descriptor, where there is a string descriptor for each string in the
array. However, the pointer to the string descriptor of array element 0 is
the value given by VARPTR plus seven. Again, the first byte of the string
descriptor is the length-of that string, and the third and fourth bytes



contain the address of the first byte of that string. The pointer to the
string descriptor can be found as follows:

10 DIM A$(9)

15 FOR X=0 TO 9

20 A$(X)="STRING" + STR$(X)
25 NEXT X

30 P=VARPTR(A(3))

P is the address of the string descriptor of array element A$(3). The
address of the first byte of this string can be calculated and printed, in
hexadecimal, by adding the following

40 P1=256*PEEK (P+2)+PEEK(P+3)
50 PRINT HEX$(P1)

Statements 15 - 25 use, and thus establish, each string element of the
array.



CHAPTER 3

Introduction To The MC6809E Microprocessor

The heart of the Color Computer is the MC6809E microprocessor,
manufactured by Motorola, Inc. This microprocessing unit, or MPU, exists as
a large scale integrated (L.SI) circuit housed in a forty pin
dual-in-line package. The MC6809E is a very advanced eight-bit MPU with
features that include ease of programming, powerful instructions and
addressing modes, and the ability to perform many eight-bit and some 16-bit
operations. The MPU, the major subunit of the Color Computer, can be
programmed, or directed, to manipulate data, perform calculations, and
control the operation of the other subunits within the Color Computer.

The MPU is directed to perform a series of operations with a program
consisting of machine instructions and data. The machine instructions are
conceptually like BASIC commands, each performs a unique operation on some
variable. The machine instructions to be executed by the MPU must be in
memory, usually in sequential memory locations. An instruction consists of
one or more bytes, and the first byte is the operation code, or op
code. The operation code is a binary coded command that directs the MPU to
perform a certain operation. Immediately following the op code is the
operand field. The operand field may contain the data or the address of
the data to be operated upon. The data to be operated on is the operand.

The general format of an instruction with a one-byte op code and a two-byte
operand field can be shown in memory starting at address $2000 as:

2000 XX YY YY
XX is the op code and YYYY occupy the operand field.

An example of an MC6809E instruction is the Increment instruction, with
an op code of $7C. This op code will direct the MPU to increment (add one



to) the binary value stored at the two-byte address immediately following
the op code. This instruction would appear in memory as seen below.

$2000 7C 05 CD

After executing the instruction, the byte stored at address $05CD will have
been incremented by one.

Building a program by assembling op codes, addresses, and data is known
as machine language programming or machine coding, since the programmer
works intimately with machine instructions. The programmer continually
looks up the op codes and lengths of various instructions, addresses of
where data are stored, and then, by hand assembles the op codes and operand
fields to form the instructions of a program. This is termed the lowest
level of programming. It is quite tedious, and in the process of working
with the program particulars it’s easy to become divorced from the big
picture of the problem the program is meant to solve.

Assembly language is the next higher level language, though it is still
low level. The programmer is assisted by a program known as an assembler.
The programmer specifies each instruction by its mnemonic, or shorthand
English name. For instance, the mnemonic of the Increment instruction is
INC. One can also give a particular group or field of bytes a label, or
name, that will represent its starting address. Thus an assembly language
statement could appear as: '

INC COUNT

where COUNT is the label of the byte to be incremented. The assembler
would, on receiving this statement, assemble the op code and operand to
construct an increment machine instruction.

Whether one is programming in machine or assembly language, the
internal structure and operation of the MPU must be understood, to be aware
of the operations that can be performed, what limitations exist, and how to
direct the operations to most efficiently (time wise and/or memory usage
wise) arrive at a desired result.

MC6809E INTERNAL ARCHITECTURE

Before investigating the internal structure of the MC6809E we will look
in more detail at the interconnections between the MPU and the memory. In
Fig. 3-1 the MPU is connected to the memory by three data paths,
collectively known as the system bus. Each path or bus is no more than a
group of wires that conduct or transmit the state of a bit, one bit per
wire, along its length.
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Fig. 3-1 The Interconnection of MPU and Memory.

The address bus is composed of 16 wires to transmit a 16-bit address
to the memory. This technique of data transmission, where all the bits are
sent simultaneously, each on its own wire, is known as parallel data
transmission. As you can see in Fig. 3-1, the address bus is
unidirectional; the address is only sent from the MPU to the memory. The
data bus is composed of eight wires for transmitting one byte at a time.
This bus is bidirectional because the MPU could send a byte to be stored in
memory or receive a byte read from memory.

The control bus is composed of a number of special purpose bits or
control signals. One bit is the R/W signal to tell the memory to read
(R/W = 1) a byte from the address on the address bus and send it to the
MPU on the data bus. This signal could also indicate a write (R/W = 0)
operation of the byte on the data bus into the location on the address bus.
Other bits may indicate whether the MPU is using the system bus or if the
MPU is running. The control bits will be covered in detail later in this
chapter.

Fig. 3-2 shows the major components within the MC6809E and how they are
connected. The most numerous component in the MPU is the register. A
register is a group of electronic circuits in which eight or 16 bits can be
stored. The registers are similar to memory cells in that they can store
binary data. Unlike memory cells, the registers are not specified by an
address, but by their name or function. Each register serves one or a
limited number of purposes. Throughout the following discussions, various
MC6809E instructions will be casually introduced to clarify the use of the
internal components. A detailed description of each instruction can be
found in Chapter Five.

Controller

The controller block is the device that orchestrates the internal
operations to accomplish some particular task. Tasks can include reading an
instruction from memory, decoding an instruction’s op code, and directing
the other components to perform an instruction. The instruction (or I)
register within the controller is where the op code of the current
instruction is stored. The controller decodes the op code to determine the



actions to be taken to perform one instruction. Other results of decoding
the op code are the length of the instruction and whether the bytes
immediately following the op code are data or the address of the data to be
manipulated. '

Addr Bus Data Bus Control
bits bits Bus
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Fig. 3-2 A Block Diagram of the MC6809E MPU.
Courtesy Motorola,Inc.

Program Counter

The program counter (or PC) register is a 16-bit register
containing the address of the next instruction to be executed. For
instance, to start executing a program that starts at address $3000, the
program counter register would be loaded with $3000, the address of the
first byte of the first instruction of that program. At this point the
controller would initiate the instruction fetch sequence by sending the
content of the program counter register out on the address bus and telling
the memory it wants to read a byte from that address. Shortly thereafter
the first byte of the instruction, the op code, would be transferred from
memory to the MPU on the data bus and directed into the instruction



register in the controller. Then the controller would direct the program
counter register to be incremented by one. This process is repeated until
the entire instruction, the op code and operand field, has been read out of
memory and into the MPU. After reading one complete instruction, the PC
register would have been incremented to point to the first byte of the next
instruction. This is why it is important that instructions reside

sequentially in memory.

Arithmetic Logic Unit

The arithmetic logic unit, or ALU, is a collection of electronic
circuits that perform the arithmetic and logic operations. The ALU can be
conceptually represented as shown in Fig. 3-3. It can accept up to two
bytes, perform an operation on them, and produce a new byte. Usually one or
two bytes are sent to the ALU; the controller then directs the ALU to
perform a specific operation them, then routes the resulting byte to its
destination. The arithmetic operations that can be performed are addition,
subtraction, incrementing, decrementing, decimal adjust, multiplication,
and sign extension. The logic operations that can be performed are AND, OR,
XOR, shift, rotate, and complement.

byte #1
> ~.\\“\.
t
ALU ; output byte
byte #2 5
yv———~—w—~>-%,/J

Fig. 3-3 The Arithmetic Logic Unit (ALU).

An example of using the ALU is demonstrated with the Complement
instruction. In this case the instruction will exist in memory as:

$1000 73 2F 02

where the content of $2F02 is $FA. $73 is the op code of the Complement
instruction, and the byte to be complemented is at address $2F02. First the
instruction will be fetched from memory; then the controller will direct a

read operation from memory address $2F02. The byte read is routed to the
ALU and the controller directs the ALU to perform the complement operation.
The resulting byte, the complement of the original byte, is then routed

from the ALU in the MPU on the data bus to the memory. Finally, a write
operation is initiated to store the byte on the data bus at address $2F02.

The instruction is now complete and address $2F02 contains $05, the
complement of $FA. Also, the PC register has been incremented to point to



the next instruction and the instruction fetch operation is beginning
again.

Condition Code Register

The ALU performs another very important function; setting or clearing
certain bits, or flags, in the condition code, or CC, register. The
bits of the condition code register are modified by the ALU to indicate the
general outcome of an arithmetic or logic operation. The condition code
register is an eight-bit register; each bit, or flag, is an indicator of
some previous event or condition. The condition code register is organized
and each bit labeled as shown below.

7 6 5 4 3 2 1 0| bit positions

EF H I NZ V C bit labels

The C, V, Z, N, and H bits are set or cleared by the ALU to serve as a
record of the general outcome of the operation. The E, F, and I bits are
set or cleared under other conditions to later indicate the conditions of
the MPU. The E, F, and I bits will be described in detail later in this
chapter.

The C bit, bit 0 of the condition code register, indicates whether a
binary carry was generated by the ALU beyond its eight working bit
positions. If a carry is generated from the ALU during binary addition, the
C bit is set; otherwise it is cleared. Two examples of binary addition are
below.

— O oo

10
01 +
11 C=0

— O

01
10
11

[S (e .

0010
1011
1101
In the lefthand example a carry was generated from the most significant bit
position, so the C bit is set. In the second example no carry from the MSB
position was generated, so the C bit is cleared.

After a subtract operation, the C bit will be set if a borrow was
generated from the ALU. This process can be seen as:

b

b
0011 011
-1001 010
1010 000

—_ O

b
1011 110
-0010 1010
C=0 1000 1100 C=1
In the lefthand example, a borrow was not generated from the ALU, so the C
bit is cleared. In the righthand example, a borrow was generated from the
ALU, so the C bit is set.



The V bit, bit 1, is set if an overflow or underflow condition is
generated when adding or subtracting signed binary numbers. In particular,
the V bit is cleared if the two leftmost bit positions either do or do not
both generated a carry. The V bit is set if only one of the two leftmost
bit positions generate a carry. Two examples of this are:

* ok * ok
c c c ccec cc
1100 0110 0101 0011
+1111 0100 +0011 0110
V=0 1011 1010 V=1 1000 1001

where the asterisks mark the positions of the two leftmost bits. In the
lefthand example, a carry was generated by bit 6 and bit 7, so there is no
overflow and the V bit is cleared. In the righthand example, a carry is not
generated by bit 7 but a carry is generated by bit 6. Therefore there is an
overflow, and the V bit is set to indicate this. You should be able to
verify that the addition result is incorrect in the righthand example.

The Z bit, bit 2, will be set if the result of the operation is zero;
that is, if all eight bits of the resulting byte are zeros.

The N bit, bit 3, will be a copy of the MSB of the resulting byte. This
is a useful indicator when working with signed binary numbers, since the
MSB of the number, and hence the N bit, indicate the sign of the number. If
the N bit is set, the resulting signed binary number is negative.

The H bit, bit 5 of the condition code register, indicates whether
there was a carry from bit 3 of the ALU after an eight bit addition. The H
bit will be set if there was a carry and it will be clear of there was no
carry. The H bit essentially indicates if there was a carry from the least
significant nibble to the most significant nibble. Two examples of this
are: s
011 0
100 1
1

+
H=0 1

""oOo
Slo &

c
01
+01
10

ey = ¥

1
0
1

ol =

1 0 101
0 0110
1 1 1 H=1 1:011
where the asterisk marks the position of bit 3, or the source of the
half-carry. In the lefthand example no carry was generated by bit
position three so the H bit equals zero. In the righthand example there is
a carry from bit position three so the H bit equals one. After a
subtraction, the value of the H bit is not defined; that is, it is not set
to any particular state. The H bit is used by the MPU when performing a
decimal adjust on binary coded decimal numbers.

Not all of the MC6809E instructions have an effect on all the condition
code bits described so far. The conditions that the bits of the condition
code register represent are just not possible or applicable to some



instructions. A detailed description of the instructions in Chapter Five
will indicate which condition code bits are modified by each instruction.
The condition code register is probably the most important register in
the MPU because it contains the information in the C, V, Z, N, and H bits
that control the decision-making process. Decisions are made with the
conditional branch instructions. A conditional branch instruction will
branch, or jump, to a specified address (the operand) if the states of
particular condition code bits match the states the conditional branch is
looking for. If the states do not match, the conditional branch will do
nothing and execution of instructions will continue with the next
instruction after the conditional branch. A conditional branch that looks
for a match, or tests the N bit of the condition code register is the
Branch on Minus (BMI mnemonic) instruction. This instruction would appear
in symbolic notation as:

BMI §172E

If the N bit is set, the MPU will be directed to start executing
instructions starting at address $172E. If the N bit is not set the MPU
will fall through the branch and continue by executing the following
instructions. This instruction can make the decision to continue processing
the following instructions or to branch to a different series of
instructions at address $172E: if the result of the previous operation set
the N bit (the resulting byte has a negative value), then go to $172E. This
is similar to the BASIC IF... THEN command. There are 16 different
conditional branch instructions that test the various combinations of the
C,V, Z, N, and H bits being on of off.

A, B, and D Registers

The A and B registers are two identical eight-bif registers that can
each hold one byte. Each of the registers is also known as an accumulator
because they are used in close association with ALU. The results of a
series of arithmetic or logic operations accumulate in the A or B register.
It is in these registers that a byte about to be manipulated or the
resulting byte from the ALU are stored.

Let’s explore some of the capabilities of the A and B registers by
using some instructions. Suppose we want to exclusive or the two bytes that
reside at addresses $3100 and $3104, and then store the result at address
$3108. First we would use the Load A (LDA) instruction to read a byte from
memory address $3100 into the A register. This instruction, using its
mnemonic, would appear as: LDA $3100. Then the Exclusive OR A (EORA)
instruction could be used. This instruction will read a byte from memory,
perform the exclusive or operation between that byte and the byte in the A
register, and then route the resulting byte into the A register, destroying
the register’s previous contents. This instruction will appear as; EORA




$3104 .We now have the answer we want, but it is in the A register. It can
be stored in memory with the Store A (STA) instruction as: STA $3108. The
Store A instruction will store the contents of the A register at memory
address $3108. This program would collectively reside in memory as shown
below.

LDA $3100
EORA $3104
STA $3108

The same, or a similar sequence of operations, can also be performed using
the B register:

The A and B registers can also be referred to as a single entity, the D
register. The D register is 16 bits long; the upper eight bits are the A
register and the lower eight bits are the B register. This relationship is
illustrated below.

D reg. = A reg. I B reg. 1

A use of the D register is the Store D (STD) instruction. This instruction
stores the most significant byte of the D register in memory at address N
and the least significant byte at address N+1. For example: STD $2000 will
store the contents of the A register at $2000 and the contents of the B
register at $2001.

X and Y Registers

The X and Y registers are two identical 16-bit registers. Each register
is primarily used to hold an address, but can also be used to hold a double
byte of data. These registers are known as index registers because they
are typically loaded with-the starting address of a table and used to
generate the pointer, or index, to elements within that table. A limited
number of arithmetic operations can be performed on the contents of the
index registers. One operation is the addition of a signed constant number,
whose value can be from -32768 - +32767 decimal, to the contents of an
index register. Another is the addition of the contents of the A, B, or D
registers, in signed binary format, to the contents of an index register.
Finally, the auto-increment and the auto-decrement functions will
increment or decrement the contents of an index register by a value of one
or two. The results of these operations are all routed back into the
original index register.

A similar group of arithmetic operations can be performed on the
contents of an index register to generate an effective address. The
effective address is the actual address sent on the address bus to the
memory to specify a particular byte to be accessed. These operations will
not alter the contents of the index register; they only generate the



effective address. One operation is to add to the value in an index

register a signed constant number whose value can be from -32768 - +32767
decimal. The other operation is to add to the value in an index register

the contents, in signed binary format, of the A, B, or D register. These
operations let us preserve the starting address loaded into the index

register.

When using an index register as a pointer, that index register will be
in the operand field of the instruction. A Load A instruction that uses the
Y register as the pointer to the desired data would be written in symbolic
format as: LDA Y. This will load the A register with the byte stored at
the address contained in the Y register. If the Y register contains the
starting address of a table, the effective address of a particular byte can
be calculated within the operand. Examples are:

LDA 10,Y
LDA B.,Y

The first example will load the A register with the byte from the effective
address, calculated as the sum of the contents of the Y register and 10,
decimal. The second example will load the A register with the byte from the
effective address, calculated by adding the contents of the Y register to

the contents of the B register. In neither example will the Y or B

registers be changed. If the Y register points to the end of a table, the
following instruction can be used to read a byte from that table:

LDA -42.Y. In this case the effective address will be the contents of the Y
register minus a decimal 42.

The operations that modify the contents of an index register or
generate an effective address let one rapidly and easily calculate the
address of an element in a table. Also, since the index registers are 16
bits long, any location within a 64K memory may be accessed. This is one
feature that makes the MC6809E MPU a powerful microprocessor.

U and S Registers

The U and S registers are two identical 16-bit registers used as index
registers or stack pointers. When used as index registers, the U and S
registers can perform all the functions of the X and Y registers. This
means one can use up to four separate index registers. As stack pointers,
the U and S registers contain the address of the item at the top of a
stack.

A stack, as implemented by the MC6809E MPU, exists as a series of
sequential memory locations and the bytes contained within them. The byte
at the top (the newest byte) of the stack is at the lowest memory address
of the stack. The stack pointer in use, U or S, will contain that address.
The byte at the bottom, the oldest byte, is at the highest memory address
of the stack. Fig. 3-4 shows the U stack as five bytes in memory; the top



of the stack is at address $3FFC and the U register contains $3FFC. The S
stack uses the S register as its pointer.

U reg. = 3FFC 3 top of stack
3FFD —
3FFE  —
3FFF —3
4000 1 bottom of stack

Fig. 3-4 A Stack in the MC680SE

When a byte is pulled from a stack, the top byte is read and then the
stack pointer is incremented. The stack pointer is incremented to point to
the next byte in the stack and to indicate that the previously read byte is
no longer on the stack. This can be done with a Load A instruction, with
the U register as the operand and auto-incrementing by one specified. This
instruction would appear as: LDA ,U+. This instruction will load the A
register with the byte at the address in the U register and then increment
the contents of the U register by one. Now the U register will point to the
next lower byte in the stack.

A byte can also be pushed, or added, to the stack with a store
instruction. The operand will be the U register, with auto-decrementing of
one specified. Let’s say the U register contains $3FFC, that it points to
the top of the stack in Fig. 3-4. The instruction: STA ,-U will first
decrement the contents of the U register by one. (Note that the minus sign
comes before the U in the operand.) The U register will now contain $3FFB.
Then the contents of the A register will be stored at that address, or at
the new top of stack.

There are four special instructions for stack use. The PSHU and PULU
instructions respectively push on and pull off the U (user’s) stack the
contents of a register or registers. The PSHS and PULS instructions
respectively push on and pull off the S, or hardware, stack the contents of
a register or registers. An example of using the PULU instruction is: PULU
X , which will load the X register ‘with the two top bytes of ‘the stack and
increment the U register by two.

The stack pointed to by the S register is the hardware stack. There are
times when the MPU itself will push or pull data to or from this stack in
response to certain stimuli. One should not use the:S register until more
is known about the hardware stack.

Direct Page Register

The direct page, or DP, register is an eight-bit register that
holds a byte representing the upper eight bits of the ‘operand address. This
capability is used ‘when direct addressing is specified. First the page
register must be loaded with an appropriate value. Then instructions using



direct addressing may be used. Assume the DP register has been loaded with
$23. An instruction using direct addressing will appear as STA <$7C. This
instruction will store the contents of the A register in address $237C. You
can see the content of the DP register is linked, or concatenated, with

the single byte after the op code to form the effective address. This
technique allows for shorter instructions so more instructions will fit in

a given amount of memory, and the instructions will execute faster since
fewer bytes must be read from memory.

The internal components of the Mc6809E microprocessing unit are the
items with which a programmer must work. Some of the components, such as
the ALU, controller, and data paths, are not explicitly controlled by the
programmer, but they do support the execution of various instructions. As
such, their operation is transparent. For this reason the diagram most used
as a programming aid is the simplified version of a block diagram shown in
Fig. 3-5. The programming model in Fig. 3-5 depicts all the controllable
registers and labels the bits of the condition code register.

15 0

X - index register

Y - index register
— Pointer Registers

U - user stack ptr.

S - hardware stack ptr. _J

PC Program Counter
A B Accumulators
(- _J
Y
D
7 0 Direct
| DP | Page Register
7 0 Condition
{EFHINZV( Code Register

Fig. 3-5 A Programming Model of the MC6809E
Courtesy of Motorola,Inc.



MC6809E EXTERNAL CONNECTIONS

Data, addresses, and control signals are electrically transmitted to or
from the MPU via conductive pins that protrude out of the package the MPU
is housed in. The dual-in-line package that houses the MPU integrated
circuit and the connecting pins is illustrated in Fig. 3-6. The arrangement
shown is the view as seen when lookmg down on the top of the dual-in-line
package.

T

Ve | 1 @ 40| HALT
NMI | 2 39| TSC
TRQ |3 38| LIC

FIRQ | 4 37| RESET

BS |5 36| AVMA
BA |6 35| Q
Voo | 7 34| E
A0 |8 33 | BUSY
Al |9 32| R/W
A2 |10 31| DO
A3 |11 30| DI
A4 |12 29{ D2
A5 |13 28| D3
A6 |14 27| D4
AT |15 26| D5
A8 |16 25| D6
A9 117 24| D7
Al0 |18 23| Al5
All |19 22| Al4
A12 |20 21| Al3

Fig. 3-6 The Pin Assignments of the MC6809E (top view).
Courtesy of Motorola, Inc.

You can see where the address bus (A0-A15) and the data bus (D0-D7)
bits enter or leave the MPU as electrical signals. The electrical power is
supplied via pins 1 and 7 where pin 1, Vg, is connected to ground or a
reference and pin 7, VCC, is connected to a power source providing +5
volts. The state of a bit is represented by the level of the voltage at its
respective pin. A zero bit is electrically defined as being a low voltage
of between zero and +0.4 volts. A one bit is a high voltage of between +2
and +5 volts. A zero bit is called a low and a one bit is called a
high. If $82 were on the data bus, pins 24 and 30 would be high and pins
31, 29, 28, 27, 26, and 25 would be low.

The R/W (read/write) output, pin 32, is the control signal that
initiates a memory read or write operation. A write operation is started by
the MPU setting pin 32 low. The byte the MPU put on the data bus is then




written in the address the MPU put on the address bus. A read operation is
initiated by the MPU setting pin 32 high. A byte is then read from the
address the MPU put on the address bus. This byte is sent from the memory
to the MPU on the data bus.

The E and Q inputs (pins 34 and 35) to the MPU are the clock signals.
The Q clock signal is a series of electrical pulses occurring approximately
once every microsecond, or one million times a second. The E clock signal
is similar to the Q clock signal except that its pulses occur slightly
later. The clock signals are used in the MPU to step, or pace, it through
its various sequences of operations.

The HALT input (pin 40) to the MPU will, if a low is applied,
stop the MPU upon completion of the currently executing instruction.
Putting a high on pin 40 will cause the MPU to resume its operation. The BS
and BA output signals, pins 5 and 6, will be set high by the MPU to
indicate to other devices on the system.bus that the MPU is not running. In
the Color Computer the BS and BA signals are not used. While the MPU is
halted, it retains the contents of its internal register as long as the E
and Q clock signals are present.

The RESET input (pin 37) to the MPU is used to initialize, or
prepare, the MPU to run. A reset is performed, pin 37 set low momentarily,
when the microcomputer is first turned on or the reset button on the back
of the Color Computer is pressed. While the reset signal is held low the DP
register is cleared and the F and I bits of the CC register are set. The F
and I bits will be described later in this chapter. When the reset signal
is set back high, or deactivated, a sequence of operations is initiated.

First a byte is read from address $FFFE and loaded into the upper half
(bits 8-15) of the PC register. Then a byte is read from address $FFFF and
loaded into the lower half (bits 0-7) of the PC register. Then the MPU
starts executing the instruction to which the PC register points. The
address contained in addresses $FFFF and $FFFE is the reset vector, or
pointer to the instruction to begin execution after a reset. In the Color
Computer, both addresses are in BASIC ROM.

The TSC, BUSY, LIC, BS, BA, and AVMA control signals are not used in
the Color Computer. These signals can be used to control sharing the system
bus with other devices or MPU’s that could be connected to the system bus.
A hardware interrupt is initiated by IRQ, NMI, or

FIRQ being set active.

INTERRUPTS

The operation of the MPU can be viewed as a continual fetching and
executing of instructions. A program in memory may contain branch
instructions causing the MPU to jump from one section of the program to
another or cause the MPU to repeatedly execute a certain program section,
as in a loop. All operations take place internally with no regard for the
outside world. Eventually the MPU must be notified of some external event



so it can directed to perform another task. An external event can notify
the MPU of its existence by an interrupt. As the name implies, an interrupt
can interrupt an MPU that is doggedly executing a program.

An interrupt is generated in one of two ways. A hardware interrupt can
be generated by activating one of the three interrupt control signals, i.e.
IRQ, NMI, or FIRQ. This is done by momentarily setting
one of these signals low. The second type of interrupt is a software
interrupt, initiated by one of three machine instructions.

An interrupt directs, or vectors, the MPU to a program that will
investigate and/or respond to that interrupt. The initiating process is
similar to the reset operation: the MPU will fetch an address, or vector,
from a pair of predetermined memory addresses. The vector addresses are
stored in BASIC ROM at the 14 highest memory addresses. These addresses are
said to be dedicated to this purpose. Table 3-1 lists the addresses,
their contents, and the function that will use that vector, as set up by
Color BASIC 1.1. Table 3-1 is a small part of the memory map of the Color
Computer.

Location of Vector VYector Initiator
FFFE and FFFF A027 RESET
FFFC and FFFD 0109 NMI
FFFA and FFFB 0106 SWI
FFF8 -and FFF9 - 010C IRQ
FFF6 and FFF7 010F FIRQ
FFF4 and FFF5 0103 Swi2
FFF2 and FFF3 0100 SWI3

Table 3-1 The Color Computer Vector Table

If your computer has a different version of BASIC, the vectors may be
different than those in Table 3-1. The contents of addresses $FFF2 through
$FFFF can be found with the following BASIC program.

10 CLS

20 X=0:Y=&HFFFE

30 PRINT'  INTERRUPT VECTOR TABLE"

40 PRINT

50 PRINT"  ADDRESS CONTENTS"

60 K=256*PEEK(Y-X)+PEEK(Y-X+1)

70 PRINT"  "HEXS$(Y-X)"+;HEXS$(Y-X+1);"  “HEXS$(K)
80 X=X+2

90 IF X<14 THEN 60

100 END




The program the MPU is vectored to by an interrupt is known as an
interrupt handler or interrupt service routine. After the interrupt
handler has completed its task, it may return control, or jump back, to the
interrupted program so the program may continue.

IRQ Interrupt

The IRQ (interrupt request) sequence is initiated if the MPU is
running, the I bit of the CC register is not set, and the IRQ pin is
momentarily set low. The I bit of the CC register is the IRQ inhibit, or
mask, bit. If it is set, the MPU will not recognize an IRQ interrupt.

The sequence will start after the MPU completes the instruction it is
currently executing. First the E bit of the CC register is set. This will
later indicate that the entire set of registers, except the S register, has
been pushed onto the S stack. Then all the registers, the PC, U, Y, X, DP,
B, A, and CC, but not S, will be pushed onto the S stack in the order just
presented, so the CC register is at the top of the stack. Next the I bit of
the CC register is set to prevent any IRQ interrupts until the MPU is again
ready to process one. Then a low is sent out on the BA pin and a high is
sent out on the BS pin to indicate to other devices on the system bus that
the MPU has been interrupted. The upper eight bits (bits 15-8) of the PC
register are loaded with the byte read from address $FFF8 and the lower
eight bits (bits 7-0) of the PC register are loaded with the byte read from
address $FFF9. Then the BS pin is set low. Now the MPU will start to
execute the instruction whose starting address was just loaded into the PC
register. The Color Computer IRQ sequence of events can be simplified
because the BA and BS signals are not used. Its flowchart is shown in Fig.

3-7.

| Set E bit in CC reg.]

l Push all regs. onto S stackl

| Set I bit in CC reg.]
|

Load PC reg. with IRQ vector

from addr $FFF8 and $FFF9
|

Start executing instruction

at vector address

Fig. 3-7 Color Computer IRQ Sequence.




Fig. 3-8 shows the registers in the S stack as the IRQ sequence has
stacked them. The subscripted L indicates the lower byte (bits 7-0) of a
two-byte register and the subscripted U indicates the upper byte (bits
15-8) of a two-byte register. As you may have guessed, the S register
should have previously been loaded with an address at which the stack
should start. This is one of the responsibilities of a programmer who will
be using interrupts.

0O

after interrupt sequence = S ->

w
Q>O

(=]

Gddt?ﬁ‘ X

L
PCy

PC,
before interrupt sequence S -> ‘[

Fig. 3-8 The S Stack after an IRQ Sequence

The interrupt handler program could be a program to interrogate the
keyboard to see if any keys have been depressed. During the execution of
this program, it is most likely that the contents of the internal registers
will be changed. After seeing that no keys were depressed, the interrupt
handler program can return control to the point of interruption in the
original program. This is done with the Return from Interrupt (RTI)
instruction. The RTI instruction will cause the CC register to be pulled
off the S stack and its E bit inspected. In the case of returning from an
IRQ interrupt, the E bit is set, meaning that all the registers had been
pushed into the S stack. If E is set, the RTI instruction will pull the
rest of the registers, i.e. A, B, DP, X, Y, U, and PC, from the S stack.
The MPU will now resume its operation at the point of interruption with all
its registers containing their original values.

FIRQ Interrupt

The FIRQ (fast interrupt request) sequence is initiated if the MPU is
running, the F bit of the CC register is not set, and the FIRQ pin
is momentarily set low. The F bit of the CC register is the FIRQ inhibit,
or mask, bit. If it is set, the MPU will not recognize a FIRQ interrupt.

The FIRQ interrupt sequence is very similar to the IRQ sequence. The
FIRQ interrupt sequence is faster because only the PC and CC registers are
pushed onto the S stack, in that order. During the FIRQ sequence the F and
I bits of the CC register are set to prevent another FIRQ or IRQ interrupt




before the MPU is ready for one. Also, the E bit of the CC register is
cleared to indicate to the RTI instruction that the entire set of registers

was not put in the stack. A FIRQ interrupt can interrupt an IRQ interrupt
handler program because the IRQ sequence did not set the F bit. In this
sense the FIRQ interrupt is of higher priority than the IRQ interrupt. The
Color Computer FIRQ interrupt sequence (BA and BS signals not shown) and
the resulting stack can be seen in Fig. 3-9. Also note that the FIRQ vector

is read from addresses $FFF6 and $FFE7.

I Clear E bit of CC reg.

|
Push PC and CC

onto S stack post-FIRQ S -> CC
] PCy

Set I and F PC,

bits of CC reg. pre-FIRQ S -> [

{
Load PC reg. with FIRQ vector
from addr. $FFF6 and $FFF7

l ,
Start executing instruction
at vector address

Fig. 3-9 Color Computer FIRQ Interrupt Sequence

NMI Interrupt

The NMI (non maskable interrupt) is the highest priority interrupt; it
can not be masked out or inhibited. The MPU is designed so that after a
reset the NMI interrupt sequence will not begin until the S register has
been loaded. This gives the programmer time to establish where the S stack
will start. The NMI sequence is initiated by momentarily providing a low on
the NMI pin. The NMI sequence (without BS and BA signals) can be seen
in Fig. 3-10. The NMI sequence stacks all the registers, as can be seen in
Fig. 3-8.

Software Interrupts

A software interrupt can be generated by any of the three software
interrupt instructions. Their mnemonics are SWI, SWI2, and SWI3. The
software interrupt instructions initiate a sequence very similar to the IRQ
sequence. The main difference is that they can not be inhibited. Other
differences are: the SWI sequence sets both the F and I bits of the CC



register and gets its vector from addresses $FFFA and $FFFB; the SWI2
sequence does not set the I bit of the CC register and gets its vector from
addresses $FFF4 and $FFF5; the SWI3 sequence does not set the I bit of the
CC register and gets its vector from addresses $FFF2 and $FFF3. You can use

Fig. 3-7 to trace their events.

| Set E bit of CC reg. |
) ]
[Stack all regs. except Si
!
| Set F and I bits of CC reg.l
|
Load PC reg. with vector
from addr $FFFC and $FFFD
' I
Start executing instruction
at vector address

Fig. 3-10 Color Computer NMI Interrupt Sequence



CHAPTER 4

Addressing Modes of the MC6809E

The MCG6809E has an instruction set of 59 instructions, of which 40 are
manipulative, or perform tests, and 19 are branch instructions. The power
of this instruction set is greatly enhanced by the 10 basic addressing
modes available. Each addressing mode is a different way of specifying
where or what is the data to be worked on. The combination of available
internal registers, the 59 instruction types, and the 10 addressing modes
gives a total of 1464 unique instructions. Fortunately, one does not have
to memorize the 1464 combinations to effectively use the MC680SE MPU.
Typically, one would specify the required instruction type and then pick an
addressing mode suitable for accessing the desired data.

In assembly language a complete instruction is specified by a statement
where a statement is made of up to five fields. Each field is a group of
character positions in which is put information describing the statement.
The fields are statement number, symbol, command, operand, and comment.
We’ll look first at the command and operand fields, since they are used to
specify the instruction type and addressing mode.

Motorola has developed a set of conventions for an assembler to follow
in interpreting the various statement fields.- The EDTASM+ assembler follows
that set of conventions quite closely. The instruction type is specified by
putting the mnemonic of the desired instruction in the command field.
Sometimes this also specifies the addressing mode; some instructions use
only one addressing mode. In general, the addressing mode is specified by
the form of the operand in the operand field. These two fields of a
statement can appear as:

LDA §2302



A space separates the command field (LDA) from the operand field ($2302).
The different addressing modes and instruction types will be illustrated by
using statements like this one, the way a programmer will specify them. For
readers programming in machine code or who want to know each detail, the
codes in the machine instructions that determine the addressing modes will
also be described.

The 10 addressing modes are register, inherent, immediate, extended,
extended indirect, indexed, indexed indirect, relative, PC relative, and
direct addressing. Some of the MC6809E instructions can use many addressing
modes and some can use only one or a few.

As you know, the total number of unique instructions (1464) is larger
than 256, the number of unique op codes that can be represented with one
byte. This problem is solved with a postbyte. The postbyte is a byte
immediately following the machine instruction op code, and it exists only
when using the indexed, indexed indirect, extended indirect, PC relative,
and register addressing modes. Technically, these addressing modes are all
considered to be indexed since they all use a postbyte. The postbyte, when
decoded by the MPU, indicates the addressing mode and any particulars of
how the operand is to be treated. An instruction, in memory at address
2000, with a postbyte, would appear as:

op post operand
2000 code byte byte

INHERENT ADDRESSING

Inherent, or implied, ‘addressing is the simplest addressing mode; the
operand is implied within the op code. A programmer doesn’t have to
explicitly define the operand by putting something in the operand field of
a statement. Some instructions that use inherent addressing are the
increment, decrement, clear, negate, and the software interrupts. For
example, the Clear A (CLRA) instruction will clear all the bits in the A
register. This instruction is composed of just one byte, the op code. The
directions to make the MPU clear the A register are contained completely
within the op code. Some examples that specify instructions with inherent
addressing are: CLRA, INCB, COMA, and SWI. For this addressing mode the
operand fields are blank. These examples will cause the assembler to
assemble the one byte op codes of the respective instructions. (You can
also refer to Appendix B to look up the op codes.) Note that all
instructions using inherent addressing are composed of only one byte,
except SWI2 and SWI3, which have two-byte op codes. The inherent addressing
instructions also execute very quickly, as they use few bytes of memory and
work with the internal registers of the MPU.

IMMEDIATE ADDRESSING
When immediate addressing addressing is specified, the data to be



worked with will immediately follow the op code in memory. Immediate
addressing is specified in an assembly language statement with the # sign
in the operand field. An example would be:

LDA #54C

The Load A (LDA) instruction will load the hexadecimal value of 4C into the
A register. This machine instruction would reside in memory at address 1000
as:

1000 - 86 4C

$86 is the op code of the LDA instruction with immediate addressing and the
following byte is the immediate operand. Some more examples of immediate
addressing are: ADDB #$1F and LDX #DEBIT. In the first example, the
ADDB instruction will add the value of the immediate operand ($1F) to the
contents of the B register, and the result will be routed back into the B
register. A symbol is used in the operand field of the second example. The
X register is loaded with the address of the symbol, DEBIT. If DEBIT was at
address $2102, these machine instructions would appear in memory starting
at address 1000 as:

1000 CB IF

1002 8E 21 02

$CB is the op code of ADDB with immediate addressing specified, followed by
the immediate byte. At 1002 is the op code of LDX with immediate
addressing, followed by the two immediate bytes. If the register being used

is one byte long, the immediate operand is one byte long, and if the

register is two bytes long, the operand is two bytes long. A point to

remember is that the data to be used is part of the instruction.

EXTENDED ADDRESSING

Extended addressing is specified in a statement by prefixing the
operand with a > sign. This does not always have to be done, because the
assembler assumes, if the operand is not prefixed with any other special
sign, that extended addressing is to be used. With extended addressing the
operand field contains the address of the data to be manipulated. A
statement can appear as:

STB >$0445

This instruction will store the contents of the B register in location
$0445. This machine instruction would be organized in memory at address
1000 as:

1000 F7 04 45

$F7 is the op code of STB with extended addressing. This is followed by two




bytes that contain the effective address where the upper, or most
significant, byte of the addresss immediately follows the op code, and the
lower, or least significant, byte of the address is last. An instruction

using extended addressing can access any memory address from 0 - FFFF (64K)
with its two-byte operand address. Machine instructions using extended
addressing are made up of the op code (one or two bytes) and the operand
address (two bytes) so the instruction will be three or four bytes long.

Other examples are: LDU $2123 and DEC COUNT. Extended addressing is
implied because no other addressing mode is specified. The LDU instruction
will load the upper half (bits 15-8) of the U register with the byte read
from address $2123 and load the lower half (bits 7-0) of the U register

with the byte read from address $2124. The DEC instruction will decrement
the value stored at COUNT.

EXTENDED INDIRECT ADDRESSING

This addressing mode adds another level of capability to the MC6809E
instructions. The effective address when using extended indirect addressing
is contained in the two bytes pointed to by the operand field. Essentially,
the operand field points to the address of the operand. Thus, the effective
address, that is, the address to be finally used, is found indirectly. An
example of a statement specifying extended indirect addressing is:

STA [$1022]

The bracketed operand indicates the effective address is to be found
indirectly. Before this instruction is executed the effective address
should have been stored starting at address $1022. Suppose $31F2 was stored
at locations $1022 and $1023. The above STA instruction could be executed
and result in the contents of the A register stored in address $31F2. As
you can see, the operand field points to where the effective address is
stored.

At the machine instruction level the op code will specify indexed
addressing, as this is a special case of indexed addressing. A postbyte
will follow to specify extended indirect addressing. See Table 4-1. The
postbyte will contain $9F to specify indirect addressing. Following the
postbyte is the two-byte operand field. The STA instruction would appear in
memory at address 1000 as:

1000 A7 9F 10 22
1022 31 F2

$A7 is the STA with indexed addressing op code. The effective address would
be in memory at address $1022.



REGISTER ADDRESSING :

The Exchange, Transfer, and the stack push and pull instructions use
register addressing to specify which registers will be acted upon. The
operand field of a statement representing one of these instructions would
contain the registers to be used. Examples are:

TFR A,B
EXG D, X

For example, the Transfer (TFR) instruction will cause the contents of the
A register to be transfered to the B register. The Exchange (EXG)
instruction will cause the contents of the D and X registers to be
exchanged. In these examples a register pair is in the operand field, but

at the machine instruction level the register pair is contained in a
postbyte.

In the EXG and TFR instructions the most significant nibble (bits 7-4)
of the postbyte contains the code of the source register and the least
significant nibble (bits 3-0) contains the code of the destination
register. The source and destination nomenclature apply mainly to the TFR
instruction, where the contents of the source register is transfered to the

destination register. The format of the postbyte and register codes can be
seen in Fig. 4-1.

Postbyte

T T ] ¥ T 'I _l
Source | Destination

1 [} ] ! (] [} ]

Register codes:

0000 =D 0101 = PC
0001 = X 1000 = A
0010 =Y 1001 = B
0011 =U 1010 = CCR
0100 =S 1011 = DPR

Fig. 4-1 The Transfer/Exchange Postbyte
Courtesy of Motorola, Inc.

The example TFR and EXG machine instructions. would be organized in
memory starting at address 3000 as:

3000 1F 89
3002 1E 01

Each instruction is two bytes long. At address 3000 is $1F, the op code of




the TFR instruction, followed by $89, its postbyte. At address 3002 is 31E,
the EXG op code, followed by $01, its postbyte.

The stack push and pull instructions are PSHS, PSHU, PULU, and PULS.
They are all capable of pushing registers on or pulling registers from a
stack in a fixed order. The order in which registers are pushed on or
pulled from a stack is determined by the postbyte. The registers to be
pushed or pulled are designated in the operand field of the instruction
statement. For example: PSHU A, X,Y will push the contents of the Y, X,
and A registers onto the U stack in that order.

The registers to be pushed or pulled are indicated in the machine
instruction by a postbyte. Each bit of the postbyte corresponds to one of
the eight registers that can be pushed or pulled. The format of the
postbyte can be seen in Fig. 4-2. If a register’s corresponding indicator
bit is set, it will be pushed or pulled. When the MPU is pushing registers
on a stack, the order is determined by scanning the postbyte from left to
right, and if a bit is set, the corresponding register is pushed on the
stack. In the case where all the registers will be pushed, the PC register
is the first and the CC register is the last to be pushed. When the MPU is
pulling registers from a stack, the order is determined by scanning the
postbyte from right to left, and if a bit is set, the corresponding
register is pulled. Where all the registers will be pulled, the first
register to be pulled is the CC register and the last is the PC register.

This technique is used to ensure that the contents of the various registers
are not mixed. The order is also exactly the same order as when an
interrupt or interrupt return causes the registers to be pushed on or
pulled from the S stack.

Postbyte

76543210
push order ->
pull order <-

bit 0 - CCR bit4 - X
biti-A bit5-Y
bit2 - B bit 6 - S/U
bit 3 - DPR bit 7 - PC

Fig. 4-2 The Push/Pull Postbyte (Courtesy of Motorola, Inc.)

The only bit of the postbyte that needs further explanation is bit 6.
If this bit is set the U register will be pushed on (PSHS) or pulled from
(PULS) the S stack, or the S register will be pushed on (PSHU) or pulled
from (PULU) the U stack. Essentially, the stack pointer can not be pushed
on or pulled from its own stack.




The PSHU A,X,Y instruction in machine language would appear in memory

at address 1000 as:
1000 36 32

$36 is the PSHU op code and $32 is the postbyte directing that the Y, X,
and A registers are to be pushed on the U stack, in that order. The
contents of these registers would be stored in memory on the U stack, as
depicted in Fig. 4-3.

Address Contents
A new top of stack

S

4 X
-3 X

2

1

e a

Y
Y.
—— old top of stack

g

Fig. 4-3 The Y, X, and A Registers Stored in the U Stack

INDEXED ADDRESSING

The indexed addressing mode of the MC6809E is the most powerful and
flexible means of accessing memory locations. In fact, the indexed
addressing mode can be divided into four submodes. In all the submodes an
index register, either X, Y, U, or S, will be specified in the operand
field of a statement and used to calculate the effective address. The
indexed addressing mode also makes the most extensive use of the postbyte.

Zero Offset Indexed Addressing
The simplest submode of indexed addressing is zero offset indexed
addressing. The index register in the operand field of a statement contains
the address of the data to be accessed by that instruction. In the
following example:
LDY #$51908
STA Y

The Y index register is first loaded with an address, or pointer, of $1908.

Then the Store A (STA) instruction stores the contents of the A register at
the address contained in the Y register. The STA instruction statement can
also be in the form of STA 0,Y. The effective address is the contents of

the Y register plus zero. Another example is:

LDU #3$2200
LDX ,U




The U register points to the data at address $2200. The Load X (LDX)
instruction will load the upper half of the X register with the byte read
from address $2200 and the lower half with the byte read from address
$2201.

At the machine instruction level, zero offset indexed addressing is
implemented with an op code specifying indexed addressing and an
appropriate postbyte. The postbyte formats of the various submodes of
indexed addressing can be found in Table 4-1.

TYPE FORMS ASSEMBLER POST
FORM BYTE

Constant Offset Zero Offset R 1RR00100
From R 5-Bit Offset n,R ORRnnnnn
(signed binary) 8-Bit Offset n,R 1RR01000
16-Bit Offset n,R IRR01001
Accumulator Offset | A Register Offset AR 1RRO0O0110
From R B Register Offset B.R 1RR00101
(signed binary) D Register Offset D,R IRR01011
Autoincrement/ Increment By 1 R+ IRR00000
Autodecrement R Increment By 2 JR++ 1RR00001
, Decrement By 1 ,~R IRR00010
Decrement By 2 ,—-R 1RR00011

Extended Indirect 16-bit address [n] 10011111

where R=X, Y, U, or S RR code: 00 - X 10 -U

01 -Y 11 -8

Table 4-1 The Postbytes of the Indexed Addressing Mode
Courtesy of Motorola, Inc.

The postbyte of the STA and LDX examples can be constructed using Table
4-1. The only bits of the postbyte that can be varied when using zero
offset are bits 5 and 6, which indicate the index register to use to obtain

the effective address. Now the machine instructions can be assembled in
memory at address 2000 as:

2000 - A7 A4
2002 - AE C4

The op codes were obtained from Appendix B. At address 2000 is the STA with
indexed addressing op code, followed by the zero offset postbyte specifying
index register Y. At 2002 is the LDX with indexed addressing op code,
followed by the zero offset postbyte specifying index register U.



Constant Offset Indexed Addressing

The next submode is constant offset indexed addressing. In this case
the effective address is the sum of the contents of the index register and
a constant number, the offset. The offset is represented with signed
binary. In the process of calculating the effective address, the contents
of the index register will not be changed. This submode can be further
divided into three forms, and each form will use an offset composed of a
different number of bits.

The first form uses an offset represented in five bits containing a
signed binary number. This form will be used if the offset is in the range
of -16 - +15 decimal and not equal to zero. You can check to see that a
five-bit signed binary number has the same range. Two statements that
specfy this form are:

LDA 7,8
STB -3,X

Each of the index registers used was previously loaded with an appropriate
value, such as the starting address of a table. You should recognize that
the offsets here are decimal, since they are not prefixed with §. The LDA
instruction will load the A register with the byte read from the effective
address, calculated as the contents of the S register plus 7. The STB
instruction stores the contents of the B register in the effective address,
calculated as the sum of the contents of the X register plus -3. After
executing these instructions, neither the S nor X registers’ contents will
have changed.
The machine instructions for these examples will be composed of: the op

code and a postbyte, where the five-bit offset field is contained within
the postbyte. The postbyte format can be determined from Table 4-1. The RR
bits of the postbyte specify the index register to use to calculate the
effective address. The nnnnn bits are the five-bit field which contains the
signed binary offset. Therefore, the two instructions will appear in memory
at address 1000 as:

1000 A6 67

1002 E7 1D

The LDA instruction is at address 1000 and the STB instruction is at
address 1002.

The next form of constant offset indexed addressing uses an eight-bit
field to contain the signed binary equivalent of the offset. This form will
be invoked when the offset ranges from decimal -128 - +127 and is outside
the range of decimal -16 - +15. Two examples are:

INC $3E,U
STD -53,X



The U and X registers were previously loaded with appropriate addresses.
In the first example the INC instruction will increment the contents of the
effective address by one. The address is calculated as the contents of the
U register plus $3E. The STD instruction will store the contents of the
upper half of the D register at the effective address and the lower half at
the effective address plus one. The effective address is the sum of the
contents of the X register and decimal -53.

The machine instruction is composed of the op code, postbyte, and an
offset byte residing in that order in consecutive memory locations. The op
code can be found in Appendix B and the format of the eight-bit offset
postbyte can be found in Table 4-1. The offset byte will contain just the
signed binary representation of the offset. Therefore, the two examples
would appear in memory at address as:

1000 6C 3E 60
1003 ED 88 CB

Each instruction is three bytes long. The INC-instruction is at address
1000 -and the STD instruction is at address 1003.

The last form of constant offset indexed addressing uses a 16-bit
(two-byte) field to contain the signed binary equivalent of the offset.

This form is used if the offset ranges from decimal -32768 - +32767 and is
outside the range of decimal -128 - +127. An example is COM 1725,S. The S
register was previously loaded with an appropriate address. This Complement
(COM) instruction will complement all the bits stored at the effective
address. In this example the effective address is the sum of the contents

of the S register and decimal 1725.

The machine instruction exists as an op code, post byte, and two bytes
containing the signed binary offset. The op code can be found in Appendix B
and the 16-bit offset post byte format can be found in Table 4-1. The
instruction would be organized in memory at address 1000 as:

1000 63 ES 06 BD

The $63 is the COM with indexing op code and $E9 is the post byte. $06BD is
the signed binary equivalent of the offset, 1725.

Accumulator Offset Indexed Addressing
The accumulator offset indexed addressing submode adds the contents of
an accumulator (A, B, or D register) to the contents of the index register
to calculate the effective address. The offset value in the accumulator is
in signed binary so the offset can be either negative or positive. An
example is:
ADDB #3504
LDA B,Y



The Y register was previously loaded with an appropriate value. The ADDB
instruction will add the immediate value of 4 to the contents of the B
register, or increment the B register by 4. Then the LDA instruction loads
the A register with the byte read from the effective address of the sum of
the contents of the Y register and the contents of the B register. Here is
one of the advantages of this addressing mode; the offset value can be
calculated by the program. The accumulator and index registers are not
changed by calculating the effective address.

The machine instruction is composed of the op code and an appropriate
postbyte determined from Table 4-1. The above LDA instruction would appear
in memory at address 3400 as:

3400 A6 AS

$A6 is the op code of the LDA with indexed addressing, and $AS is the
postbyte.

Auto-increment/Auto-decrement

The auto-increment and auto-decrement forms of indexed addressing allow
automatic incrementing or decrementing of the index register to easily
access sequential memory locations. These addressing forms result in a
modified index register after an instruction is executed.

An instruction with auto-incrementing specified will perform its
operation using the effective address contained in the index register. Then
the index register is incremented by one or two, as specified.
Auto-incrementing by one is specified by a plus (+) sign after the index
register in the operand field. Auto-incrementing by two is specified by two
plus signs. Two examples are:

LDX #32400
STA X+
STU X4+

The X register is first loaded, by the LDX instruction, with an address of
$2400. The STA instruction stores the contents of the A register at the
address ($2400) contained in the X register. Then the value in the X
register is incremented by one, as specified by the single + sign. The X
register now contains a $2401. The STU instruction stores the contents of
the upper half of the U register at address $2401 and the contents of the X
register is incremented by one. Then the upper half of the U register is
stored in address $2402 and the X register is again incremented by one
resulting in the X register containing $2403. As you can see, this relieves
us of having to increment a pointer or offset to point to the next item in
a table.



An instruction with auto-decrementing specified will first decrement
the contents of the index register by one or two and then proceed with the
instruction’s execution using the new effective address contained in the
index register. Auto-decrementing by one is specified by a minus (-) sign
before the index register in the operand field. Auto-decrementing by two is
specified by two minus signs. Two examples are:

LDU #33110
STB ,-U
LDX ,--U

The LDU instruction loads the U register with the address $3110. The STB
instruction starts by decrementing the U register by one, as specified by
the single minus sign, so the U register will contain $310F. Then the
contents of the B register are stored at address $310F. The LDX instruction
will first decrement the U register by two, as specified by the two minus
signs; resulting in the U register containing $310D. Then the bytes read
from $310D and $310E are loaded into the respective upper and lower halves
of the X register.

The auto-incrementing and auto-decrementing of index registers were
designed to operate in the same fashion as a stack pointer so this
addressing mode can be used when accessing a stack. When pulling or pushing
a register off or on a stack, the increment or decrement value should be
one for a one-byte register and two for a two-byte register. For example:
LDA ,S+ will pull a byte off the S stack into the A register and increment
the S register so it points to the next lower byte in the stack.

At the machine instruction level this LDA instruction would appear in
memory at address 1000 as:

1000 A6 EO

$A6 is the op code of the LDA with indexed addressing. The $EO postbyte
specifies auto-incrementing by one of the S index register.

INDEXED INDIRECT ADDRESSING

In indexed indirect addressing the operand field indirectly specifies
the effective address. This is similar to extended indirect addressing, in
which the operand field points to where the effective address is stored.
All the indexed addressing modes, except auto-increment/auto-decrement by
one and 5-bit offset may be used in indexed indirect addressing. If an
instruction statement were to appear to specify 5-bit offset indexed
indirect addressing, the assembler will interpret it as an 8-bit offset and
assemble the machine instruction accordingly. Indexed indirect addressing
is specified in a statement by enclosing the operand in brackets, [ ].
Examples of all legal addressing modes are:



LDB [,Y]

STA [12,X]
LDX [B,Y]
STX [,--S]
LDD [,U++]

Each operand points to 2 memory location where the effective address is
stored. That effective address is read from memory by the MPU and used to
perform that instruction.

A detailed example of indexed indirect addressing follows. Memory
locations $2310 and $2311 contain the address $1A0A. The X register
contains $2300. The instruction: STA $10,X will form an address of 2310
by adding the offset, $10, to the contents of the X register. Then the
effective address will be read out of addresses $2310 and $2311, yielding a
$1A0A. Finally the contents of the A register are stored at address $1AQA.

The machine instruction is composed of an op code specifying indexed
addressing, a postbyte specifying indirect addressing, and an offset of one
or two bytes. The formats of the postbytes of the various types of indexed
indirect addressing can be found in Table 4-2.

TYPE FORM ASSEMBLER POST
FORM BYTE
Constant Offset Zero Offset [LR] 1RR 10100
From R 8-Bit Offset [n,R] 1RR 11000
16-Bit Offset [n,R] IRR11001
Accumulator Offset | A Register Offset [A,R] 1IRR10110
From R B Register Offset [B,R] 1RR10101
D Register Offset [D,R] 1RR11011
Auto-increment/ Increment by 2 [, R++] 1RR10001
Auto-decrement Decrement by 2 [,--R] 1RR10011
where R = X, Y, U, or S RR code: 00 - X 10-U

01 -Y 11 -39S

Table 4-2 The Postbytes of Indexed Indirect Addressing Modes
Courtesy of Motorola, Inc.

The STA example instruction would appear in memory at address 1000 as:
1000 A7 98 10
The indexed addressing mode is 8-bit offset. $A7 is the STA with indexed

addressing op code obtained from Appendix B. The $98 is the indirect 8-bit
offset postbyte obtained from Table 4-2. The $10 is the offset byte.



RELATIVE ADDRESSING

Relative addressing is used only with branch instructions, where the
address to branch to is relative to the PC register’s contents. A branch
instruction’s operation is to see if certain CC register bit states match
the condition it’s looking for. If they match, the PC register’s contents
are modified, forcing the MPU to execute instructions at some other
address. Remember, the PC register contains the address of the next
instruction to be performed.

Relative addressing is specified in a statement whenever the mnemonic
is that of a branch instruction. This is actually the PC relative
addressing mode; therefore all the branch instructions are position
independent. Two types of branches are the long branch and the short
branch. Each is available for every condition of the CC register bits that
can be tested for a match. For example, the Branch on Carry Set (BCS) will
cause a branch if the carry bit of the CC register is set. Its short and
long forms are specified by the mnemonics BCS and LBCS, respectively.

The short branch machine instruction exists in memory as a single byte
op code followed by an offset byte containing the signed binary
representation of the offset. If the branch is taken, the offset byte is
added to the PC register and the MPU starts to execute instructions at the
new address in the PC register. Since the offset is signed binary and eight
bits long, the short branch can branch forward only 127 memory addresses,
or backward 128 addresses. An example of a BCS instruction at address 1000
with an offset of decimal +36 is:

1000 25 24

The $25 is the BCS op code from Appendix B and the $24 is the offset byte
representing a decimal +36. After fetching this instruction, the PC
register will contain $1002, the address of the next instruction. If the
carry bit is set, the branch operation will be performed by adding the
offset byte, $24, to the PC register, $1002, with the result that the PC
register will contain $1026. The MPU then fetches and starts executing the
instruction at address $1026.
The long branch instruction exists as an op code two bytes long and a
two-byte offset. In this case the offset value can range from
decimal -32768 - +32767. Essentially, the long branches perform the same as
the short branches, except they can branch further forward and backward.
The short branch ‘consumes fewer memory locations and executes faster.
When composing assembly language statements, normally one is not much
concerned about relative addressing since the assembler will calculate the
offset values. To decide which branch to use, use the short form because of
its speed and memory savings. A branch beyond the limits of 127 forward or
128 backward will display a byte overflow error message. You can then
change just the required branches to the long form.



DIRECT ADDRESSING
In direct addressing the op code is followed by one byte, the lower

byte of the effective address. The upper byte is in the direct page (DP)
registér. During a RESET operation, the DP register is cleared to 00. To
use this addressing mode the DP register must be loaded with the
appropriate value. Unfortunately, there is no Load DP instruction; it is
loaded as follows:

LDA #3520

TFR A,DP

The LDA instruction loads the A register with the desired value, $20 in
this example. Then the TFR instruction transfers the contents of the A
register into the DP register.

The direct addressing mode is invoked by prefixing the operand with a <
sign. Two examples are:

LDA <$DE
STU <$2082

The DP register was previously loaded with $20. The LDA instruction’s
effective address is 20DE, the combination of the DP register and the
operand. The assembler will assemble the STU instruction as STU <$82.. It
will drop the most significant byte of a two-byte operand if we have
informed the assembler of the DP register’s contents with SETDP command
(described in Chapter Six) and the most significant byte of the operand
address is equal to the contents of the DP register.

The machine instructions will exist as op codes specifying direct
addressing, followed by the lower address byte. They would appear at
address 1000 as:

1000 96 DE
1002 DF 82

The LDA with direct addressing op code is the $96 at address 1000, followed
by the lower address byte of $DE. The STU with direct addressing op code is
the $DF at address 1002, followed by the lower address byte of $82.

The advantages of direct addressing are that each instruction takes
fewer memory locations and they execute faster. The disadvantages are that
the DP register must be loaded with an appropriate value. Also, the range
of effective addresses is 256, the range of the lower address byte. If you
want to access a location outside this range, the DP register must be
loaded with a new value.

PROGRAM COUNTER RELATIVE ADDRESSING
Program counter, or PC, relative addressing is a type of indexed
addressing wherein the PC register is used as an index register. It allows



one to easily write a program that is position independent if the
instructions accessing memory locations within that program use this
addressing mode. A program that is position independent can be located at
almost any series of addresses and still run correctly.

Before explaining this addressing mode another assembly language
concept needs to be introduced. The symbol field of a statement is a group
of character positions in which a symbol, name, or label can be put.
Symbol, label, and name are equivalent terms and represent the address of
the item in the command and operand fields of that statement. The label
relieves us of having to work with absolute addresses within a program.

PC Relative Addressing
The PC relative addressing mode is specified in a statement by
appending ,PCR to the operand. This can be seen as:

STA TABLE,PCR
LDX TABLE

TABLE ~RMB 20

The STA statement is using PC relative addressing. The bottom statement
uses the mnemonic of RMB, a command to tell the assembler to reserve memory
bytes, in this case 20 decimal. The reserved 20 sequential memory locations
is named TABLE, and the assembler has assigned the starting address of
those 20 bytes to be equivalent to TABLE. The assembler will construct the
LDX instruction using the TABLE address. In the case of the STA
instruction, the offset of TABLE from what the PC register would contain
when executing the STA instruction is calculated and used in assembling the
STA with PC relative addressing machine instruction. The STA instruction
will store the contents of the A register at TABLE, the starting address of
the series of 20 reserved bytes.

If this program were put in some other memory addresses, the STA
instruction would still access the memory location a fixed number of bytes
offset from it; in this case, the new location of TABLE. The LDX
instruction, which does not use PC relative addressing, would access the
original address of TABLE and not its new address. Thus, the STA is
relocatable and the LDX is not.

The machine instruction exists in one of two forms, depending on
whether the offset will fit in an 8 or 16-bit offset field using signed
binary representation. EDTASM+, will use the 16-bit offset field whenever a
labeled operand is detected. The op code will be an op code specifying
indexed addressing, as this is a type of indexed addressing. The postbyte
can be found in Table 4-3.



TYPE FORM ASSEMBLER POST
FORM BYTE
Constant Offset 8-Bit Offset n,PCR 1xx01100
From PC 16-Bit Offset n,PCR 1xx01101

where xx = don’t care

Table 4-3 The Postbytes of PC Relative Addressing
Courtesy of Motorola, Inc.

Following the postbyte will be one or two bytes containing the offset.
The effective address will be the sum of the offset and the contents of the
PC register. Note that the effective address is calculated relative to the
location of the next instruction, since the PC register has been
incremented to point to it. An example of a STA instruction with a PC
relative offset of a decimal +25 is: A7 8C 19. $A7 is the STA with indexed
addressing op code and $8C is the postbyte, indicating an 8-bit offset. The
offset byte contains $19, the signed binary equivalent of decimal +25.

If an absolute address outside the program is accessed, the position
independency is lost. Two examples are:

STA $1700,PCR
LDX 1000,PCR

In the first example the STA instruction will store the contents of the A
register in address $1700. In the second example the X register will be
loaded with the two bytes read from the decimal addresses of 1000 and 1001.
The assembler constructs the instructions at some address in memory, and
the offset to the absolute address will be calculated and put in the offset
byte(s). If we later moved those instructions to another address, they

would not access the desired memory locations because their offsets would
not have changed, but the contents of the PC register would have.

Indirect PC Relative Addressing

PC relative addressing can also be used to indirectly specify the
effective address. This is called indirect PC relative addressing. In this
addressing mode the operand field points to where the effective address is
stored in memory. This addressing mode is specified in a statement by
enclosing the operand in brackets as seen below.

STB [TABLE,PCR]

In this case the effective address is located in the first two bytes,
starting at TABLE. The MPU will read the effective address from memory and



use it to direct where the contents of the B register will be stored.

The machine instruction exists as an op code specifying indexed
addressing followed by a postbyte, and then a one or two-byte offset. The
postbyte will indicate indirect PC relative addressing and whether the
offset is contained in one or two bytes. The postbyte formats can be found
in Table 4-4. The above instruction with a two-byte offset of a
decimal -202 would appear in memory as: E7 9D FF 36. $E7 is the STB with
indexed addressing op code followed by the $9D postbyte, as found in Table
4-4. The $FF36 is the signed binary offset representation of decimal -202.

TYPE FORM ASSEMBLER POST
FORM BYTE
Constant Offset | 8-Bit Offset [n,PCR] 1xx11100
From PC 16-Bit Offset [n,PCR] 1xx11101

where xx = don’t care

Table 4-4 The Postbytes of Indirect PC Relative Addressing
Coutesy of Motorola, Inc.

This completes the descriptions of the various addressing modes. If you
are already familiar with assembly language and have an assembler, try
writing some programs.



CHAPTER 5

MC6809E Instruction Set

The 59 instructions of the MC6809E are its instruction set. This
chapter describes the operation of the instructions; some very similar
instructions may be grouped together in one description. The descriptions
are titled with the instruction mnemonics and are in alphabetical order.
Within each description is the instruction’s source form, type, operation,
affect on the CC register bits, legal addressing modes, and the description
of its operation, with examples.

The source form of an instruction is the manner in which the mnemonic
and any operand would appear in a statement. A list of statements
representing a program is known as the source code. An assembler reads
the source code and generates the machine instructions corresponding to
each statement; the resulting machine instructions are known as the object
code.

Instructions can be classified by type: data movement, arithmetic,
logic, test, branch, and miscellaneous. Data movement instructions are
those that load, store, transfer, or exchange data. Also included are
instructions that push or pull data to or from a stack. Arithmetic
instructions are those that add, subtract, increment, decrement, clear a
byte, negate a byte, operate on BCD numbers, multiply, and perform sign
extension. Logic instructions perform the logical operations of AND, OR,
EOR, shift or rotate a byte, complement, and AND or OR immediate data with
the CC register. Test instructions can perform an arithmetic or logical
comparison of data in a register with data in memory, or test for a zero,
minus, or positive value in a memory location or the A or B register.
Branch instructions let the MPU make decisions based on the conditions of
certain bits in the CC register. These instructions should be used
immediately after an instruction that modifies the CC register, if a



Symbol

Description

CC

DD
DDDD
DP

EA
LSN
MSN

TEMP

The A register.

The B register.
The condition code register.

The D register.

An 8-bit offset of a branch instruction.

A 16-bit offset of a branch instruction.

The direct page register.

The effective address.

Least significant nibble.

Most significant nibble.

Memory location contents specified by the operand field.
The immediate byte following an op code
An operand field specifying a memory location to be accessed by
the immediate, direct, extended, indexed, or the special cases
of indexed addressing.

Program counter register.

An operand field specifying a memory location by the direct,
extended, indexed, or the special cases of indexed addressing.
A byte will be read, modified, and written back to it.

A register before an operation.

A register after an operation.

The S register.

A register within the MPU where results are temporarily stored.
The U register.

The X register.

A byte (two hexadecimal d1g1ts)

Most significant byte of a 16-bit number.

Least significant byte of a 16-bit number.

The Y register.

Contents of a register in parentheses is used as an address.
Indicates the immediate addressing mode.

Indicates the following number is hexadecimal

Brackets around the operand indicate indirect addressing.

In operand field, indicates indexed addressing.

Indicates a transfer of data.

Logical AND.

Logical OR.

Logical exclusive OR.

Logical NOT or complement.

Indicates the quantities are concatenated.

Arithmetic addition, subtraction, or multiplication.

Table 5-1 Abbreviations and Meanings.




decision based on the results of that instruction is desired. The
miscellaneous instructions are those that do not fit in any of the other
types; they include software interrupts, return from interrupt, sync, etc.
In the descriptions, abbreviations and symbols will be used, whose
definitions can be found in Table 5-1.

The condition code description explains which bits of the CC register
are affected, and how they are modified by each instruction. These
condition code bits will be set or cleared on completion of the executing
instruction, unless stated otherwise. The addressing modes each instruction
can use are quite straightforward, except for indexed addressing. In the
following descriptions, indexed addressing includes all the indexed
addressing submodes plus those special cases technically considered to
belong to this mode. The special cases are: extended indirect, indexed
indirect, PC relative, and PC relative indirect addressing. The RESET and
interrupt operations are also included at the end of this chapter; they
perform functions similar to instructions.

ABX Add Accumulator B into the X Register
Source Form: ABX

Operation: X’ <- X+B Type: Arithmetic
Addressing Modes: Inherent. Condition Codes: Not Affected.

Description: The contents of the B register, in straight binary, are added
to the contents of the X register; the result is routed back into the X
register. For example:

, LDB #§$21
LDX #$1091
ABX

LDB and LDX load the immediate values of $21 and $1091, respectively, into
the B and X registers. After the ABX instruction executes the X register
contains $10B3, the sum of the contents of the B register and the original
contents of the X register. Note that the contents of the B register are

not changed.

ADC Add with Carry into Register
Source Forms: ADCA P ; ADCB P
Operation: R’ <- R+M+C Type: Arithmetic

Addressing Modes: Immediate, Extended, Direct, and Indexed.
Condition Codes:
H - Set if the operation caused a half carry, or carry from bit 3 in
the ALU; cleared otherwise.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
will indicate a negative result if using signed binary.
Z - Set if the resulting byte is zero; cleared otherwise.



V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary numbers.

C - Set if a carry out of bit 7 in the ALU is generated by this
operation; cleared otherwise.

Description: A byte is read from a memory location as specified by the
operand field. The sum of that byte, the current carry (C) bit, and the
contents of the A or B register (ADCA or ADCB) is routed back to the A or B
reigster. An example of ADCB using extended addressing can_.be set up.
Suppose the B register contains $68, the C bit is clear, and memory
location $2820 contains $AS. The instruction ADCB $2820 will execute using
the following process:
0 current state of C bit

1010 0101 byte read from $2820
+0110 1000 current contents of B

0000 1101 new contents of B

C=1

The B register will contain $0D and the C bit will be set. The H, N, Z, and
V bits are cleared. This instruction would be used when adding two strings
of bytes such as:
XX XX XX XX
+YYYYYY YY

The addition would be performed byte by byte from right to left. Any carry
generated by adding of two bytes would be added, by the ADC instruction,
with the next two bytes to the left; in effect, propagating any carries.

ADD (8 Bit) Add Memory into Register
Source Forms: ADDA P ; ADDB P
Operation: R’ <- R+M Type: Arithmetic

Addressing Modes: Immediate; Extended; Direct; Indexed.
Condition Codes:
H - Set if the operation caused a half carry, or carry from bit 3 in
the ALU; cleared otherwise.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. The N
bit set indicates a negative result if using signed binary.
7 - Set if the resulting byte is zero; cleared otherwise.
V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary numbers.
C - Set if a carry out of the ALU, from bit 7, is generated; cleared
otherwise.

Description: A byte is read from memory as specified by the operand field.
That byte is added to the contents of the A or B (ADDA or ADDB) register
and the resulting byte is routed back into the respective A or B register.



If, for example, the A register contains $A3, then the ADDA with immediate
addressing: ADDA #3$22 will result in the A register containing $C5, the sum
of $A3 and $22. This process is shown as:

1010 0011 current contents of A
+0010 0010 immediate byte from memory
11000101 new contents of A

The CC register bits are also modified so the N bit is set and the H, Z, V,
and C bits are cleared.

ADD (16 Bit) Add Memory into Register
Source Form: ADDD P
Operation: D’ <- D+M:M+1 Type: Arithmetic

Addressing Modes: Immediate; Extended; Direct; Indexed.
Condition Codes:

H - Not affected.

N - Set if bit 15 of the resulting 16-bit word is set; cleared
otherwise. N set indicates a negative result if using signed
binary.

Z - Set if the resulting word is zero; cleared otherwise.

V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary numbers.

C - Set if a carry is generated from bit 15; cleared otherwise.

Description: Two bytes are read from two consecutive memory locations; the
operand field specifies the first address. The two bytes are concatenated

to produce a 16-bit word to be added to the contents of the D register. If
two bytes are stored at addresses $1900 and $1901 such as:

1900 01 7D

and the D register contains $6091, the following instruction with extended
addressing: ADDD $1900 will result in the D register containing $620E, the
sum of $6091 and $017D. The CC register would also be modified so that N,
Z,V, and C are clear.

AND Logical AND Memory into Register
Source Forms: ANDA P; ANDB P
Operation: R’ <- RAM Type: Logic

Addressing Modes: Immediate, Extended, Direct, Indexed.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. The N
bit set indicates a negative result if using signed binary.



Z - Set if the resulting byte is zero; cleared otherwise.
V - Always cleared by this instruction.
C - Not affected.

Description: A byte is read from a memory address as specified by the
operand field. That byte is ANDed with the contents of the A or B (ANDA or
ANDB) register and the resulting byte is routed back to the same A or B
register. Here is an example using indexed addressing: a byte of $77 is

stored at address $2280 and the B register contains $DF. Then:

LDY #3$2280
ANDB Y

will first load (LDY) the Y register with the address of interest. The ANDB
instruction will read a byte from the address specified in the Y register
and AND it with the contents of the B register. The result, $57, is then
routed back into the B register. This can be demonstrated as:

1101 1111 current contents of B
A011]1 0111 ~ byte read from memory
0101 0111 new contents of B

The CC register is also modified so the N, Z, and V bits are cleared. A
typical use for this instruction is to clear selective bits in the A or B
register. The bits to be cleared are those that are clear in the operand
byte. This can be seen above.

ANDCC Logical AND Immediate Byte into CC Register
Source Form: ANDCC #zxx
Operation: CC’ <- CCAMI Type: Logic

Addressing Modes: Immediate.
Condition Codes: Any or all bits may be affected. See description.

Description: The immediate byte is read from memory and ANDed with the
contents of the condition code register. The resulting byte is then routed
back into the CC register. For example, if the CC register contains $38,

the instruction: ANDCC #$F7 will result in the CC register containing $30.
Note that this instruction can be used to clear particular bits in the CC
register. In this example, bit 3 of the CC register was cleared since bit 3

of the operand was clear.

ASL Arithmetic Shift Left
Source Forms: ASL Q; ASLA; ASLB
Operation: C <-17 <- 0] <- 0 Type: Arithmetic

Addressing Modes: Inherent; Extended; Direct; Indexed.




Condition Codes:

H - Its state is not defined after this instruction. It may change to
some unpredicted state, therefore a branch instruction that tests
its state should not be used after an ASL instruction.

N - Set if bit 7 of the resulting byte is set; cleared otherwise.

Z - Set if the resulting byte is zero; cleared otherwise.

V - Set if the exclusive OR of bits 7 and 6 of the original operand is
1; cleared otherwise.

C - Set if bit 7 of the original operand was set; cleared otherwise.

Description: The bits of a byte are shifted one bit position to the left,
depicted by the above operation, where the byte may be a byte read from
memory (ASL Q) or the contents of the A or B (ASLA or ASLB) register. In
the shift left process, bit 0 of the resulting byte is cleared and the

original state of bit 7 is shifted into the C bit of the CC register. The
resulting byte is then returned to its source - memory or the A or B

register. For example, suppose $55 is stored at address $18E0Q. The ASL with
extended addressing: ASL $18E0 will read the byte, $55, from address $18EOQ.
The shift operation is performed as:

01010101 original byte
C<- 0101010 1<-0 shift
C=0 10101010 resultant byte

The resulting byte of $AA is stored back in memory address $18E0. Also, the
CC register bits are modified; the C and Z bits are cleared, the N and V
bits are set, and the H bit may be either set or clear.

ASR Arithmetic Shift Right
Source Forms: ASR Q; ASRA; ASRB
Operation: | 7 -> 0]->C Type: Arithmetic

Addressing Modes: Inherent; Direct; Indexed; Extended.
Condition Codes:
H - Its state is not defined after this operation, therefore a branch
instruction testing its state should not follow this instruction.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
indicates a negative result if using signed binary numbers.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Not affected.
C - Set if bit 0 of the original operand was set; cleared otherwise.

Description: A byte’s bits are shifted one bit position to the right as

depicted in the above operation; the byte may have been read from memory
(ASR Q) or come from the A or B (ASRA or ASRB) register. In the right shift
process bit 7 is unchanged and bit 0 is shifted out of the byte into the C



bit. The resulting byte is returned to its source - memory or the A or B
register. For example, suppose the B register contains $85. The ASR with
inherent addressing: ASRB will perform the arithmetic shift right operation
on the contents of the B register as:

10000101 original contents of B
1 000010 1->C shift
=1 11000010 result

The resulting byte of $C2 is now routed back to the B register. The CC
register is modified where the C and N bits are set, the Z bit is cleared,
and the H bit may be set or clear.

BCC Branch on Carry Clear

Source Forms: BCC DD; LBCC DDDD

Operation: TEMP <- MI Type: Branch
If C=0, then PC' <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BCC will perform a branch if the C bit is clear; otherwise
processing will continue with the instruction following the BCC. The BCC is
equivalent to the BHS instruction.

BCS Branch on Carry Set

Source Forms:-BCS DD; LLBCS DDDD

Operation: TEMP <- MI Type: Branch
If C=1, then PC’ <- PC+TEMP :

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BCS will perform a branch if the C bit is set; otherwise
processing will continue with the instruction following the BCS. The BCS is
equivalent to the BLO instruction.

BEQ Branch on Equal

Source Forms: BEQ DD; LBEQ DDDD

Operation: TEMP <- MI Type: Branch
If Z=1, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BEQ will perform a branch if the Z bit is set; otherwise
processing continues with the instruction following the BEQ. The BEQ is
typically used after a compare instruction and will cause a branch if the
two compared quantities were exactly the same. Used after a subtract
instruction, it will branch if the result is zero.



BGE Branch on Greater than or Equal to Zero
Source Forms: BGE DD; LBGE DDDD

Operation: TEMP <- MI Type: Branch
If (N »V)=0, then PC’ <- PC+TEMP
Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BGE will perform a branch if the N and V bits are both set
or both clear; otherwise processing continues with the instruction

following the BGE. The BGE is typically used after a subtract or compare of
signed binary quantities. After a compare it will branch if the register
contents were greater than or equal to the memory operand. After a subtract
it will branch if the result is greater than or equal to zero.

BGT Branch on Greater Than

Source Forms; BGT DD; LBGT DDDD

Operation: TEMP <- MI ; Type: Branch
If Z v(N+V)=0, then PC’ <- PC+TEMP

Addressing Modes: Relative, Condition Codes: Not affected.

Description: The BGT will perform a branch if the Z bit is clear and the N
and V bits are both set or both clear; otherwise processing will continue
with the instruction following the BGT. The BGT is typically used after a
compare or subtract of signed binary quantities. After a compare it will
cause a branch if the register contents were greater than the memory
operand. After a subtract it will branch if the result is greater than

Zero.

BHI Branch if Higher

Source Forms: BHI DD; LBHI DDDD

Operation: TEMP <- MI Type: Branch
If (Cv Z)=0, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BHI will perform a branch if the C and Z bits are both
clear; otherwise processing will continue with the instruction following
the BHI. The BHI is typically used after a compare or subtract of straight
binary quantities. After a compare it will branch if the register contents
were greater, or higher, than the memory operand. After a subtract it will
branch if the result is greater than zero.

BHS Branch if Higher or Same
Source Forms: BHS DD; LBHS DDDD
Operation: TEMP <- MI Type: Branch

If C=0, then PC’ <- PC+TEMP
Addressing Modes: Relative. Condition Codes: Not affected.




Description: The BHS will perform a branch if the C bit is clear; otherwise
processing will continue with the instruction following the BHS. The BHS is
typically used after a subtract or compare of straight binary quantities.

After a compare, it will branch if the register contents were higher than

or the same as the memory operand. After a subtract, it will branch if the
result is zero or greater than zero. The BHS is a duplicate of the BCC, and
can be specified by one of two mnemonics, BHS or BCC. This assists the
programmer by giving the instructions names conveying the operation of each
instruction.

BIT Bit Test
Source Forms: BITA P; BITB P
Operation: TEMP <- R AM Type: Test

Addressing Modes: Immediate; Direct; Extended; Indexed.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
indicates a negative number if using signed binary numbers.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Always cleared.
C - Not affected.

Description: The BIT instruction causes a byte to be read from memory,
specified by the operand field. That byte is ANDed with the contents of the
A or B (BITA or BITB) register and the resulting byte is temporarily stored
in the TEMP register, never to be used. The contents of the memory location
and the A or B register are not changed; only the CC register is modified.
The BIT instruction is used to test the condition of a bit in a memory
location. For example, suppose one wanted to know if bit 1 of the byte
stored at address $112C is set or clear. This could be found as follows:

LDA #3502
BITA §112C

LDA loads A with $02 (only bit 1 set). BITA ANDs the contents of address
$112C with the contents of A and sets or clears the appropriate CC register
bits. If the byte read from memory has bit 1 set, the resulting byte will
have only bit 1 set, as seen below:

0000 0010 contents of A
A Xxxx xx1lx contents of $112C
0000 0010 result

The x means we do not care what state that bit is in. The Z bit would be
cleared indicating a non-zero value and bit 1 of the operand byte is set.



If bit 1 of the operand was not set, the Z bit would be set, since the
result of ANDing would be zero.

BLE Branch on Less than or Equal to Zero

Source Forms: BLE DD: LBLE DDDD

Operation: TEMP <- MI Type: Branch
If Z v(N*V)=1, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BLE will perform a branch if the Z bit is set or if

either, but not both, the N or V bit is set; otherwise processing will
continue with the instruction following the BLE. The BLE can be used after
an addition or subtraction of signed binary values where it will branch if
the result is less than or equal to zero. It can also be used after a

compare of signed binary values where it will branch if the register
contents are less than or equal to the memory operand.

BLO Branch on Lower

Source Forms: BLO DD; LBLO DDDD

Operation: TEMP <- MI Type: Branch
If C=1, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BLO will perform a branch if the C bit is set; otherwise
processing will continue with the instruction following the BLO. The BLO
instruction is used after a subtract or compare of straight binary numbers
and will branch if the register contents were lower, or smaller, than the
memory operand. Note that the BLO is the same as the BCS instruction.

BLS Branch on Lower or Same

Source Forms: BLS DD; LBLS DDDD

Operation: TEMP <- MI Type: Branch
If (C v Z)=1 then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BLS will perform a branch if the C or Z bits are set;
otherwise processing will continue with the instruction following the BLS.
The BLS is used after a subtract or compare of straight binary numbers and
will branch if the register contents were lower than or the same as the
memory operand.

BLT Branch on Less Than Zero
Source Forms: BLT DD; LBLT DDDD
Operation: TEMP <- MI Type: Branch

If (N %V)=1, then PC’ <- PC+TEMP



Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BLT will perform a branch if either, but not both, the N
or V bit are set; otherwise processing continues with the instruction
following the BL.T. The BLT is used after a subtract or compare of signed
binary quantities. After a subtract, it will branch if the result is less

than zero. After a compare, it will branch if the register contents are

less than the memory operand.

BMiI Branch on Minus

Source Forms: BMI DD; LBMI DDDD

Operation: TEMP <- MI Type: Branch
If N=1, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BMI will perform a branch if the N bit is set; otherwise
processing will continue with the instruction following the BMI. Since the
BMI does not check for the overflow condition, it is best to use the BLT
after an operation on signed binary numbers.

BNE Branch on Not Equal

Source Forms: BNE DD; LBNE DDDD

Operation: TEMP <- MI Type: Branch
, If Z=0, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BNE will perform a branch if the Z bit is clear; otherwise
processing will continue will the instruction following the BNE. The BNE,
if used after a subtraction, will branch if the result is not zero. If used
after a compare, it will branch if the register contents do not equal the
memory operand. '

BPL Branch on Plus

Source Forms: BPL DD; LBPL DDDD

Operation: TEMP <- MI Type: Branch
If N=0, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BPL will perform a branch if the N bit is clear; otherwise
processing will continue with the instruction following the BPL. The BPL is
used after an operation on straight binary quantities to branch if the

result is less than $80. If the quantities are signed binary, it is best to

use the BGE instruction.



BRA Branch Always
Source Forms: BRA DD; LBRA DDDD

Operation: TEMP <- MI Type: Branch
PC’ <- PC+TEMP
Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BRA will always perform a branch, regardless of the state
of the bits of the CC register. The BRA is also known as an unconditional
branch.

BRN Branch Never

Source Forms: BRN DD; LBRN DDDD

Operation: TEMP <- MI Type: Branch
Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BRN will never perform a branch; therefore processing
always continues with the instruction following the BRN.

BSR Branch to Subroutine
Source Forms: BSR DD; LBSR DDDD
Operation: TEMP <- MI Type: Branch

S’ <~ 8-1, (S) <- PC},
S’ <- 8-1, (S) <- PCy
PC’ <- PC+TEMP
Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BSR will first push the contents of the PC register into

the S stack by decrementing the contents of S by one, and storing the lower
half of the PC register at the address now contained in S. Then the

contents of S are decremented again by one and the upper half of the PC
register contents stored at the new address in S. The BSR instruction

always branches to, normally, a subroutine. The last instruction of the
subroutine should be an RTS, which will pull the PC register value from the
S stack and cause the MPU to return to the program that called the
subroutine. There processing will resume with the instruction immediately
following the BSR.

BVC _ Branch on Overflow Clear

Source Forms: BYC DD; LBVC DDDD

Operation: TEMP <- MI Type: Branch
If V=0, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BVC will perform a branch if the V bit is clear; otherwise
processing will continue with the instruction following the BVC. The BVC,




used after an operation on signed binary quantities, will branch if no
overflow occurred.

BVS Branch on Overflow Set

Source Forms: BVS DD; LBVS DDDD V

Operation: TEMP <- MI Type: Branch
If V=1, then PC’ <- PC+TEMP

Addressing Modes: Relative. Condition Codes: Not affected.

Description: The BVS will perform a branch if the V bit is set; otherwise
processing will continue with the instruction following the BVS. The BVS is
used after an operation on signed binary numbers and will branch if an
overflow condition was generated.

CLR Clear Accumulator or Memory Location
Source Forms: CLR Q; CLRA; CLRB
Operation: TEMP <- xx Type: Arithmetic

M <- 00 or R <- 00

Addressing Modes: Inherent; Direct; Indexed; Extended.
Condition Codes:

H - Not afftected.

N - Always cleared.

Z - Always set.

V - Always cleared.

C - Always set.

Description: The contents of the A or B (CLRA or CLRB) register or of a
memory location (CLR Q) are cleared so it now contains 00.

CMP (8 Bit) Compare Memory from Register
Source Forms: CMPA P; CMPB P
Operation: TEMP <- R-M Type: Test

Addressing Modes: Immediate; Extended; Direct; Indexed.
Condition Codes:

H - Its state is undefined therefore its state should not be tested
with a branch instruction.

N - Set if bit 7 of the byte resulting from the subtraction process is
set; cleared otherwise. N set indicates that the contents of M are
greater than the contents of the accumulator in use, if comparing
signed binary numbers.

7 - Set if the byte resulting from the subtraction process is zero;
cleared otherwise. Z set indicates that the a contents of the
memory location exactly equal the contents of the accumulator in
use. :




V - Set if an overflow condition was generated by the subtraction
process; cleared otherwise. This bit is applicable only to signed
binary numbers.

C - Set if a borrow from bit 7 of the ALU is generated by the
subtraction process; cleared otherwise. When comparing straight
binary values, C set indicates the accumulator.contents are lower
than the memory location contents.

Description: The CMP compares the contents of accumulator A or B (CMPA or
CMPB) to the contents of a memory location by subtracting the memory
contents from the accumulator contents. The resulting byte is not used and

the contents .of the accumulator and memory location are not changed. Only
the bits of the CC register are modified to indicate the result. For

example, the A register contains $A3 and memory location $3F22 contains

$11. The CMP instruction with extended addressing: CMPA $3F22 will subtract
$11 from $A3 clearing the Z, V, and C bits, setting the N bit, and leave

the H bit in an undetermined state. The subtraction process is demonstrated

as:

b
1010 0011 contents of A
-0001 0001 contents of memory
1001:001.0 unused result
CMP (16 Bit) , Compare Memory from Register
Source Forms: CMPD P; CMPX P; CMPY P; CMPU P; CMPS P
Operation: TEMP <- R-M:M+1 Type: Test

Addressing Modes: Immediate; Extended; Direct; Indexed.
Condition Codes:

H - Not affected.

N - Set if bit 15 of the word resulting from the subtraction process is
set; otherwise cleared. N set indicates the memory operand is
greater than the register contents if comparing signed binary
numbers.

Z - Set if the word resulting from the subtraction process is zero;
otherwise cleared. Z set indicates the memory operand is exactly
equal to the register contents.

V - Set if the subtraction process resulted in a 16-bit overflow or
underflow; cleared otherwise. This applies only to signed binary.

C - Set if a borrow is generated out of bit position 15 during the
subtraction process; otherwise cleared. If comparing straight
binary numbers, C set indicates the register contents are lower
than the memory operand.

Description: The CMP compares the contents of a 16-bit register with the
contents of two consecutive memory addresses; the operand field specifies



the first address. The compare is performed by subtracting the 16-bit word,
read from two memory locations, from the contents of the selected 16-bit
register. As a result, the memory locations and the 16-bit register are
not modified; only the CC register bits may be set or cleared to indicate
the result. For an example of comparing signed binary numbers, the Y
register contains $021A and memory locations $1705 and $1706 contain $072E
as seen below:

1705 07 2E

The instruction to compare the Y register with the two-byte memory operand
using extended addressing is: CMPY $1705. The compare is performed by
reading the two bytes from addresses $1705 and $1706, and concatenating
them to form the number 072E. That number is then subtracted from the value
in the Y register and the CC register bits are set or cleared accordingly.

The subtraction process in hexadecimal is:

b bbb
021A contents of Y
-072E memory operand
FAEC unused result

As a result, the C and N bits are set and the Z and V bits cleared.

COM Complement
Source Forms: COM Q; COMA; COMB
Operation: M <- xx or R <- R Type: Logic

Addressing Modes:Extended; Indexed; Inherent; Direct.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Always cleared.
C - Always set.

Description: The COM instruction will replace the contents of a memory
location (COM Q) or the A or B (COMA or COMB) register with its logical
complement. The contents will be read, the state of each bit reversed, and
then stored where the original was taken. For example, the A register
contains $E6. The instruction: COMA results in the A register containing
$19. In the CC register, the C bit is set and the N, V, and Z bits are
cleared.



CWAI Clear CC bits and Wait for Interrupt
Source Forms: CWAI #$xx
Operation: CC’ <- CC A MI Type: Miscellaneous
Set E bit
S’ <- S-1, (S) <- PC,
S <~ S-1, (S) <- PCy

S’ <= S-1, (S) <- U,
S’ <- §-1, (S) <- U
S <-8-1,(8) <- Y
S <- S-1, (S) <- Y.
S’ <~ §-1, (S) <~ X,
S’ <- 8-1, (8) <- X
S’ <- S-1, (S) <- DP
S’ <~ S-1, (S) <- B
S <~ S-1, (8) <- A

S’ <- §-1, (S) <- CC
Wait for interrupt
Addressing Modes: Immediate.
Condition Codes: All bits may be affected; see description.

Description: The CWAI will AND the contents of the CC register with the
immediate byte and route the result back into the CC register. The AND
operation allows one to selectively clear bits in the CC register. Then the
E bit of the CC register is set and all the MPU registers are pushed onto
the S stack. The MPU stops processing and waits for an interrupt. When an
interrupt that is not masked out occurs, the MPU resumes processing at the
vector address of that type of interrupt. This is a way of synchronizing
the operation of the MPU with an external event.

For example, the S register has been loaded to establish the S stack;
the instruction: CWAI #3EF will clear the I bit of the CC register, then
set the E bit, and stack the entire set of MPU registers. The MPU stops and
waits for an interrupt. In this case, the I bit has been cleared to allow
an IRQ interrupt but the F bit may have previously been cleared, allowing
an FIRQ interrupt. Also, the NMI interrupt may be processed since it can
not be masked out. When an allowed interrupt occurs, IRQ for example, the
MPU gets the vector address stored at addresses $FFF8 and $FFF9 and loads
it into the PC register. The MPU starts processing instructions at the new
address in the PC register. This new address is normally the starting
address of an interrupt handler which, when finished, executes an RTI
instruction. The RTI pulls all the MPU registers from the S stack and
causes the MPU to resume processing at the instruction following the CWAL




DAA Decimal Addition Adjust
Source Forms: DAA
Operation: A’ <- A+CF(MSN):CF(LSN) Type: Arithmetic
CF is a correction factor for each BCD digit (nibble). .CF, for each
nibble, will be either a 0 or a 6 as determined below.
CF(LSN)=6 if 1)the H bit from the previous operation was set
or 2)the value of the LSN is greater than 9
CF(MSN)=6 if 1)the C bit from the previous operation was set
or 2)the value of the MSN is greater than 9
or 3)the MSN>8 and the LSN>9
Addressing Modes: Inherent.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Not defined (could be any state).
C - Set if a carry from bit 7 is generated or if the previous operation
set the C bit; cleared otherwise.

Description: After adding BCD numbers with the ADDA or ADCA, the total may
contain nonvalid BCD codes. The DAA is normally used immediately after an
ADDA or ADCA because it uses the condition codes generated by them and
operates only on the contents of the A register. The DAA performs the
adjustment of the result of binary addition by adding a correction factor

(0 or 6) to each nibble to make each nibble a valid BCD code. For example,

the BCD numbers 55 and 17 can be added and adjusted with these two
instructions (in this case the A register contains $55):

ADDA #§17
DAA

The ADDA will adds, in binary, $55 and $17 to yield $6C, which is routed
back to the A register. The DAA inspects the contents of A and the CC
register, that in this case will determine a CF(MSN) of 0 and a CF(LSN) of
6. The DAA adds the correction factors into the A register as:

6B contents of A
+06 correction factors
72 valid BCD result in A

Now the A register contains $72, the correct result of adding the two BCD
numbers. When adding BCD numbers composed of multiple bytes, the ADCA must
be used to propagate any carries throughout the bytes being added.



DEC Decrement
Source Forms: DEC Q; DECA; DECB
Operation: M’ <- M-1 or R’ <- R-1 Type: Arithmetic
Addressing Modes: Inherent; Indexed; Extended; Direct.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
indicates a negative result if using signed binary numbers.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary.
C - Not affected.

Description: The DEC instruction will decrement the contents of a memory
location (DEC Q) or the A or B (DECA or DECB) register by one. When
decrementing straight binary values, only the BEQ or BNE should be used to
branch based on the result, since the DEC instruction does not affect the C
bit. If using signed binary numbers, any of the signed binary branches may
be used. For example, the B register contains $C4. A DECB instruction will
result in B containing $C3. In the CC register, N will be set and Z and V
will be cleared. '

EOR Exclusive OR
Source Forms: EORA P; EORB P
Operation: R’ <- R¥M Type: Logic

Addressing Modes: Immediate; Direct; Extended; Indexed.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Always cleared.
C - Not affected.

Description: The EOR will read a byte from a memory address as specified by
the operand field. That byte is exclusive ORed with the contents of the A

or B (EORA or EORA) register and the result is routed back to the A or B
register, respectively. For example, the B register contains $77. The EOR
with immediate addressing: EORB #$0F results in the B register containing
$78. The operation is demonstrated in binary as:

0111 0111 contents of B
»0000 1111 immediate byte
0111 1000 new contents of B

A bit set in the operand will toggle, or reverse, the state of the




corresponding bit in the register.

EXG Exchange Registers
Source Forms: EXG R1,R2
Operation: R1 <-> R2 Type: Data Movement

Addressing Modes: Register.
Condition Codes: Not affected unless the CC register is exchanged.

Description: The contents of two registers, R1 and R2, are exchanged. The
two registers must be of the same size: both 8-~bit or both 16-bit. The
registers that may be accessed are A, B, D, X, Y, U, S, CC, DP, and PC.

For example, the U register contains $1120. The instruction: EXG U,PC
results in the U register containing what was the current PC register value
and the PC register containing $1120. Now the MPU will start executing
instructions address $1120. This example is a unique type of branch
operation.

INC Increment
Source Forms: INC Q; INCA; INCB
Operation: M’ <- M+l or R’ <- R+l Type: Arithmetic

Addressing Modes: Inherent; Indexed; Extended; Direct.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
indicates the result is negative if using signed binary numbers.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary.
C - Not affected.

Description: The INC will increment the contents of a memory location (INC
Q) or the A or B (INCA or INCB) register by one. When incrementing
straight binary numbers, only BEQ or BNE should be used to branch on the
result since INC does not affect the C bit. If using signed binary numbers,
any of the signed binary branches may be used. For example, the A register
contains $D5. The INCA instruction will result in A containing $D6. The CC
register will also be modified where the N bit is set and the Z and V bits
are cleared.

JMP Jump to Effective Address
Source Forms: JMP EA
Operation: PC’ <- EA Type: Miscellaneous

Addressing Modes: Direct; Extended; Indexed.
Condition Codes: None are affected.



Description: The effective address, as specified by the operand field, is

loaded into the PC register causing the MPU to start executing instructions

at the effective address. For example, the JMP with extended addressing:

IMP $2122 will cause the MPU to jump, or unconditionally branch, to address
$2122.

JSR Jump to Subroutine at Effective Address
Source Forms: JSR EA
Operation: §’ <- S-1, (S) <~ PCy, Type: Miscellaneous
S’ <~ $-1, (8) <- PCy
PC’ <- EA

Addressing Modes: Direct; Extended; Indexed.
Condition Codes: None are affected.

Description: The JSR will first push the contents of the PC register onto

the S stack. Then the PC register is loaded with the effective address, as
specified by the operand field. The MPU starts executing instructions at

the effective address, usually the starting address of a subroutine. The

last instruction of the subroutine should be an RTS, which will pull the PC
contents from the S stack, causing the MPU to resume processing at the
instruction following the JSR. For example, the Y register contains $3E20.
The JSR with indexed addressing: JSR 10,Y causes the MPU to stack the PC
contents in the S stack and then start executing a subroutine at address
$3E2A, the sum of the contents of Y and 10, decimal.

LD (8 Bit) Load Register from Memory
Source Forms: LDA P; LDB P
Operation: R’ <- M Type: Data Movement

Addressing Modes: Immediate; Direct; Indexed; Extended.
Condition Codes:

H - Not affected.

N - Set if bit 7 of the byte read from memory is set; cleared
otherwise. N set indicates a negative signed binary number has
been loaded into the register.

Z - Set if a value of zero is loaded into the register; cleared
otherwise.

V - Always Cleared.

C - Not affected.

Description: The LD instruction reads a byte from a memory address

specified by the operand field. That byte is loaded, or routed, into the A

or B (LDA or LDB) register. For example, LD with immediate addressing such
as LDB #$8C results in the B register containing $8C and, in the CC

register, N is set and Z and V are cleared.




LD (16 Bit) Load Register from Memory
Source Forms: LDD P; LDX P; LDY P; LDU P; LDS P

Operation: R’ <- M:M+1 Type: Data Movement
Addressing Modes: Immediate; Direct; Extended; Indexed.

Condition Codes:

H - Not affected.

N - Set if bit 15 of the loaded register is set; cleared otherwise. N
set indicates a negative 16-bit signed binary number has been
loaded into the selected register.

7 - Set if a value of zero is loaded into the register; cleared
otherwise.

V - Always cleared.

C - Not affected.

Description: The LD instruction reads two bytes from two memory addresses;
the operand field specifies the first address. The two bytes are

concatenated so that the first byte is now the upper half of a 16-bit word
and the second byte is the lower half. That 16-bit word is then loaded into
the selected register. For example, the U register contains the value

$2D04. At addresses $2D04 and $2D05 are stored two bytes such as:

2D04 5F 8A
The LD with indexed addressing: LDY ,U loads the Y register with the two

bytes the U register points to. In this case, Y is loaded with $5F8A and,
in the CC register, N, Z, and V are cleared.

LEA Load Effective Address
Source Forms: LEAX; LEAY,; LEAS; LEAU
Operation: R’ <- EA Type: Data Movement

Addressing Modes: Indexed.
Condition Codes:
H - Not affected.
N - Not affected.
7 - For LEAX and LEAY, set if a value of zero is loaded into the X or Y
register; cleared otherwise. For LEAS and LEAU, Z is not affected.
V - Not affected.
C - Not affected.

Description: The LEA instruction will calculate the effective address
specified by the operand field, but only by using the indexed addressing
mode. The effective address will be loaded into the selected index

register. No data will be read from memory at the effective address. For
example, the A register contains $27 and the X register contains $1A10. The
LEA instruction: LEAU A,X loads the effective address ($1A37), the sum of




the contents of the A and X registers, into the U register. The A and X
registers are not modified. Some other examples are:

LEAX ,U transfer U contents to X
LEAY 5,Y increment contents of Y by 5
LEAU -9,U decrement contents of U by 9
LEAX D,S S plus D transfered to X -

The auto increment/decrement indexed mode is not used. Due to the internal
operation of the MPU, LEAY ,Y+ for example, will not result in Y being
incremented.

LSL Logical Shift Left
Source Forms: LSL Q; LSLA; LSLB
Operation: C <- <=0 Type: Logic

Addressing Modes: Inherent; Extended; Indexed; Direct.
Condition Codes:
H - Undefined, therefore a branch should not be used to test its
condition.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Cleared if the original bits 6 and 7 were both set or both clear;
set otherwise.
C - Set if bit 7 of the original byte was set; cleared otherwise.

Description: The LSL shifts the contents of -a memory location (LSL Q), or
the A or B (LSLA or LSLA) register, to the left one bit position. Bit 7 of
the original byte is shifted into the C bit and bit 0 of the result is

cleared. For example, address $310A contains $8A. The LSL with extended
addressing: LSL $310A reads the byte, $8A, from address $310A. Then it is
logically left shifted ;{as seen below:

1000 1010 byte from memory
C<- 10001010 <=0 shift left
C=1 00010100 resultant byte
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The resulting byte, $14, is stored in address $310A and in the CC register
C and V are set and Z and N are cleared.

LSR Logical Shift Right
Source Forms: LSR Q; LSRA; LSRB ~
Operation: 0 -> | 7 —-> O| -> C Type: Logic

Addressing Modes: Inherent; Extended; Direct; Indexed.
Condition Codes:
H - Not affected.



N - Always cleared.

Z - Set if the resulting byte is zero; cleared otherwise.

V - Not affected.

C - Set if bit 0 of the original byte was set; cleared otherwise.

Description: The LSR will shift the contents of a memory location (LSR Q),
or the A or B (LSRA or LSRB) register, to the right one bit position. Bit 7
of the result is cleared and bit 0 of the original byte is shifted into the

C bit. For example, the B register contains $9E. The LSR with inherent
addressing: LSRB results in the following binary operation:

1001 1110 old contents of B
0-> 1001 1110 ->C right shift
C=0 0100 1111 new contents of B

The B register now contains $4F and, in the CC register, C, N, and Z are
cleared.

MUL Multiply
Source Forms: MUL
Operation: D’ <- A x B Type: Arithmetic

Addressing Modes: Inherent.
Condition Codes:
H - Not affected.
N - Not affected.
Z - Set if the result, in D, is zero; cleared otherwise.
V - Not affected.
C - Set if the operation sets bit 7 of the D register; cleared
. otherwise.

Description: The MUL will multiply (using straight binary) the contents of
the A register by the contents of the B register. The resulting 16-bit word
is routed into the D register. For example, A contains $4B and B contains
$0C. The multiply instruction: MUL calculates the product of $4B and $0C,
and stores that result in the D register. This can be demonstrated, in
binary, as:

01001011 contents of A
x 00001100 contents of B
01001011
01001011
0000001110000100 new contents of D

As a result, D contains $0284 and, in the CC register, Z is cleared and C
is set. The D register is composed of the A and B registers linked



together; therefore, the A and B contents are destroyed. The A register is
the upper half and B is the lower half of the D register.

NEG Negate
Source Forms: NEG Q; NEGA; NEGB
Operation: M’ <- 0-M or R’ <- 0-R Type: Arithmetic

Addressing Modes: Inherent; Indexed; Extended; Direct.
Condition Codes:
H - Undefined, therefore a branch should not be used to test its
condition.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Set if the original byte was $80; cleared otherwise.
C - Set if a borrow out of bit 7 of the ALU was generated during the
subtraction process; cleared otherwise.

Description: A byte is read from a memory (NEG Q) location or the A or B
(NEGA or NEGB) register. The two’s complement of that byte is generated by
subtracting it from zero and the resulting byte is routed back to its
source. This instruction will reverse the sign of a signed binary number in
a byte. There are two exceptions to this process, however: If the original
byte contains $80, the result is $80 with the V bit set. If the original
byte contains a zero, the result is zero and, only in this case is the C
bit cleared.

For example, the B register contains $FC, the signed binary equivalent
of decimal -4. The negate instruction: NEGB loads the B register with the
two’s complement of its original contents as seen below.

b
zero value
contents of B

new contents of B

o»—aoc‘

b
0
1
0

o_.oCT‘
o)—aoo‘
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0
1
0
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0
0
0
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C=1

The B register now contains $04, the signed binary representation of
decimal +4. In the CC register, C is set and N,V, and Z are cleared.

NOP No Operation
Source Forms: NOP
Operation: None Type: Miscellaneous

Addressing Modes: Inherent.  Condition Codes: None are affected.

Description: The NOP, or no-op, instruction does nothing. The MPU will
fetch the NOP op code, decode it, and then fetch the following instruction.



OR Inclusive OR Memory into Register
Source Forms: ORA P; ORB P
Operation: R’ <- RvM Type: Logic
Adresing Modes: Immediate; Indexed; Extended; Direct.
Condition Codes:

H - Not affected.

N - Set if bit 7 of the resulting byte is set; cleared otherwise.

Z - Set if the resuling byte is zero; cleared otherwise.

V - Always cleared.

C - Not affected.

Description: The OR instruction reads a byte from a memory location
specified by the operand field. That byte is ORed with the contents of the
A or B (ORA or ORB) register and the result is routed back to the
respective A or B register. This instruction can be used to selectively set
bits in the A or B registers. Any bit set in the operand byte will result

in the corresponding bit being set in the register. For example, the A
register contains $40 and the immediate operand is $11. The following OR
instruction: ORA #311 results in bits 0 and 4 of the A register being set
as seen below:

01000000 contents of A
v 0001 0001 operand byte
0101 0001 new contents of A

Now A contains $51 and, in the CC register, the N, Z, and V bits are
cleared.

ORCC Inclusive OR Memory into the CC Register
Source Forms: ORCC #xx
Operation;: CC’ <- CC v M1 Type: Logic

Addressing Modes: Immediate.
Condition Codes: Any bits may be set; see description.

Description: The ORCC instruction will inclusive OR the immediate byte with
the contents of the CC register. The resulting byte is routed back to the

CC register. This instruction lets one set selective bits in the CC

register. Bits set in the operand byte will set corresponding bits in the

CC register. For example, the CC register contains $22. The instruction:
ORCC #5850 sets bits 6 and 4 in the CC register as seen below:

00100010 contents of CC
v0101 0000 operand byte
0111 0010 new contents of CC



PSHS Push Registers on the Hardware Stack
Source Forms: PSHS register list
Postbyte:| 7 push order -> 0} Type: Data Movement
Operation: If bit 7 of postbyte is set; S’ <- S-1, (S) <- PCy,
S’ <= §8-1, (S) <~ PCy
If bit 6 of postbyte is set; S’ <- S-1, (S) <- Uy,
S’ <= 8-1, (S) <- Uy
If bit 5 of postbyte is set; 8" <- S-1, (8) <- Yy,
S <~ 8-1, (8) <- Yy
If bit 4 of postbyte is set; 8’ <~ S-1, (S) <- X,
S <= 8-1, (8) <~ Xy
If bit 3 of postbyte is set; §* <- S-1, (S) <- DP
If bit 2 of postbyte is set; S’ <~ S-1, (S) <- B
If bit 1 of postbyte is set; S’ <- S-1, (8) <- A
If bit 0 of postbyte is set; §' <- S-1, (S) <- CC
Addressing Modes: Register.
Condition Codes: None are affected.

Description: The PSHS can push any, all, or none of the MPU registers onto
the S (hardware) stack, but not the S register. The registers to be pushed
are determined by the bits set in the postbyte, and the order of pushing is
always the same (see Fig. 4-2). That order is: bit 7 first to bit 0 last,

as seen in operation diagram. A byte is stored in the stack by decrementing
the pointer, S, by one and then storing the byte at the address now
contained in S. In a statement the registers to be pushed are contained in
the operand field and are represented by these abbreviations: PC, U, Y, X,
D, DP, B, A, and CC. Each abbreviation must be separated by a comma. The
registers may be presented in any order in the operand field but the actual
pushing order is always the same, as determined by the postbyte.

For example, the contents of the U, A, and B registers can be pushed
onto the S stack, where S contains $380A, the current address of the top of
the stack. The push instruction: PSHS A,B,U  will store the contents of U
at $3808 and $3809, B at $3807, and A at $3806. The S register now contains
$3806, the new top of stack address.

PSHU Push Registers on_the User Stack
Source Forms: PSHU register list
Postbyte:|7  push order -> 0l Type: Data Movement

Operation: If bit 7 of postbyte is set; U’ <- U-1, (U) <- PC,
U’ <- U-1, (U) <- PCy

If bit 6 of postbyte is set; U’ <- U-1, (U) <- 5

U’ <- U-1, (U) <- Sy

If bit 5 of postbyte is set; U’ <- U-1, (U) <- Y,

U’ <- U-1, (U) <- Yy

If bit 4 of postbyte is set; U’ <- U-1, (U) <- X,



U’ <- U-1, (U) <~ Xy
If bit 3 of postbyte is set; U’ <- U-1, (U) <- DP
If bit 2 of postbyte is set; U’ <- U-1, (U) <- B
If bit 1 of postbyte is set; U’ <- U-1, (U) <- A
If bit 0 of postbyte is set; U’ <- U-1, (U) <- CC
Addressing Modes: Register.
Condition Codes: None are affected.

Description: The PSHU can push any, all, or none of the MPU registers onto
the U (user) stack, but not the U register. The registers to be pushed are
determined by the bits set in the postbyte, and the order of pushing is
always the same (see Fig. 4-2). That order is: bit 7 first to bit 0 last,
as in the operation diagram. A byte is stored in the stack by first
decrementing the pointer (U) by one, and then storing the byte at the
address now contained in U. In a statement, the registers to be pushed are
contained in the operand field and are represneted by these abbreviations:
PC, S, Y, X, D, DP, B, A, and CC. Each abbreviation must be separated by a
comma. The registers may be presented in any order in the operand field but
the actual pushing order is always the same, as determined by the postbyte.
For example, the contents of the X, A, and CC registers can be pushed
on the U stack, where U contains $2216, the current address of the top of
the stack. The push instruction: PSHU A,X,CC will store the contents of X
at $2214 and $2215, A at $2213, and CC at $2212. The U register now
contains $2212, the new top of stack address.

PULS Pull Registers from the Hardware Stack
Source Forms: PULS register list
Postbyte: |7 <~ -pull order 0] Type: Data Movement

Operation: If bit 0 of postbyte is set; CC* <- (S), S’ <- S+1
If bit 1 of postbyte is set; A’ <- (S), S’ <- S+l
If bit 2 of postbyte is set; B’ <- (S), S’ <- S+l
If bit 3 of postbyte is set; DP* <- (S), S’ <~ S+1
If bit 4 of postbyte is set; Xy <= (5), §" <~ S+1
X <= (8), § <- S+1
If bit 5 of postbyte is set; Yy <= (8), §* <- S+l
Y, <= (8), S’ <- S+1
If bit 6 of postbyte is set; Uy’ <-(8), § <~ S+1
U <= (8), § <~ 8+1
If bit 7 of postbyte is set; PCy’ <~ (S), §* <- S+1
PC; <~ (8), §* <- S+1
Addressing Modes: Register.
Condition Codes: The CC register may be pulled from the stack and
therefore possibly change its contents. If the CC register is not pulled
from the stack, there is no change to the CC register.



Description: The PULS can pull any, all, or none of the MPU registers from
the S (hardware) stack, but not the S register. The registers to be pulled
are determined by the bits set in the postbyte and the order of .pulling is
always the same (see Fig. 4-2). That order is: bit 0 first to bit 7 last,

seen in the operation diagram. A byte is pulled from the stack by first
reading the byte from the address contained in the S register and then
incrementing the contents of S by one. In a statement, the registers to be
pulled are contained in the operand field and are represented by these
abbreviations: PC, U, Y, X, D, DP, B, A, and CC. The registers may be
presented in any order in the operand field but the actual pulling order is
always the same, as determined by the postbyte.

For example, the U, B, and DP registers can be loaded, or pulled from, .
the S stack where S contains $3938, the current address of the top of the
stack. The pull instruction: PULS U,B,DP fetches the bytes from addresses
$3938 - $393B and puts them in the U, DP, and B registers, in that order.
The S register will have been incremented to $393C, the new top of stack
address.

PULU Pull Registers from the User Stack
Source Forms: PULU register list
Postbyte: |7 <- pull order 0} - Type: Data Movement

Operation: If bit 0 of postbyte is set; CC’ <- (U), U” <~ U+l
If bit 1 of postbyte is set; A’ <- (U), U’ <- U+l
If bit 2 of postbyte is set; B’ <- (U), U <~ U+l
If bit 3 of postbyte is set; DP’ <- (U), U’ <- U+l
If bit 4 of postbyte is set; XU <~ (U), U’ <- U+l
X;' <- (U), U’ <~ U+l
If bit 5 of postbyte is set; YU <- (U), U<~ U+l
Y, <- (U), U’ <- U+l
If bit 6 of postbyte is set; S’ <- (U), U’ <- U+l
S’ <~ (U), U’ <- U+l
If bit 7 of postbyte is set; PCy’ <- (U), U’ <- U+l
PC;’ <- (U), U’ <- U+l
Addressing Modes: Register.
Condition Codes: The CC register may be pulled from the stack and possibly
change its contents. If the CC register is not pulled from the stack, there
is no change to the CC register.

Description: The PULU can pull any, all, or none of the MPU registers from
the U (hardware) stack, but not the U register. The registers to be pulled
are determined by the bits set in the postbyte and the order of pulling is
always the same (see Fig. 4-2). That order is: bit 0 first to bit 7 last,

as in the operation diagram. A byte is pulled from the stack by first

reading a byte from the address contained in the U register and then
incrementing the contents of U by one. In a statement, the registers to be



" pulled are contained in the operand field and are represented by these
abbreviations: PC, S Y, X, D, DP, B, A, and CC. The registers may be
presented in any order in the operand field, but the actual pulling order
is always the same, as determined by the postbyte.

For example, the X, B, and DP registers can be loaded from the U stack
where U contains $1770, the current address of the top of the stack. The
pull instruction: PULU X,B,DP will fetch the bytes from addresses $1770 -
$1773 and put them in the X, DP, and B registers, in that order. The U
register will have been incremented to $1774, the new top of stack address.

ROL Rotate Left

Source Forms: ROL Q; ROLA; ROLB

Operation:  C <- 7 <~ 0 Type: Logic
s = e Lot

Addressing Modes: Inherent; Extended; Direct; Indexed.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the resulting byte is set; cleared otherwise.
7 - Set if the resulting byte is zero; cleared otherwise.
V - Cleared if bits 6 and 7 of the original byte were either both set
or both clear; set otherwise.
C - Set if bit 7 of the original byte was set; cleared otherwise.

Description: A byte is read from a memory location (ROL Q) or the A or B
(ROLA or ROLB) register and is shifted one bit position to the left. The
original C bit is shifted into bit 0 of the result and bit 7 is shifted

into the C bit. The resulting byte is routed back into its source. This is

a left rotation of nine bits. For example, the A register contains $85 and
the C bit is clear. The instruction: ROLA results in the A register
conatining $0A and the C bit set. This operation can be seen, in binary,

below:

C=0 1000 0101 contents of A and C
T 000 0101
1000 0101 left rotate

C=1 0000 1010 new contents of A and C
ROR Rotate Right
Source Forms: ROR Q; RORA; RORB
Operation: ‘-l 7 -> 0 Type: Logic

C

Addressing Modes: Inherent; Indexed; Direct; Extended.
Condition Codes:

H - Not affected.

N - Set if bit 7 of the resulting byte is set; cleared otherwise.




Z - Set if the resulting byte is zero; cleared otherwise.
V - Not affected.
C - Set if bit 0 of the original byte was set; cleared otherwise.

Description: A byte is read from a memory location (ROR Q) or the A or B
(RORA or RORB) register and is shifted one bit position to the right. The
original C bit is shifted to bit 7 and the original bit 0 is shifted to the

C bit. The resulting byte is then routed back to its source. This is a

right rotation of nine bits. For example, the B register contains $28 and

the C bit is set. The instruction: RORB will result in the B register
containing $94 and the C bit clear. This can be seen as:

C=1 0010 1000 contents. of B and C
€ 1 <
0010 100 O—] right rotate
C=0 1001 0100 new contents of B and C
RTI . Return from Interrupt
Source Forms: RTI
Operation: CC’ <- (8), S’ <- S+1, then, Type: Miscellaneous

If bit E is set; A’ <- (S), S’ <- S+1
B’ <- (8), S’ <- S+l
DP’ <~ (8), §" <- S+1
Xy <= (8), § <~ S+1
X' <= (8), §’ <- S+1
Yy' <= (8), §* <= S+1
Y, <= (8), §* <- S+1
Uy’ <= (8), § <~ S+1
U;’ <= (8), §’ <- S+1
PCy’ <= (S), 8 <- S+l
PC;’ <~ (5), §* <~ S+l

or if E is clear; PCy’ <- (S5), §’ <~ S+1
PC.’ <- (8), §’ <- S+1

Addressing Modes: Inherent.

Condition Codes: The CC register is loaded from the stack, so any or all

bits may be changed.

Description: First the CC register is pulled from the S stack. If the E bit
is set, the rest of the MPU registers will be pulled from the S stack,
except for S. If the E bit is clear, the PC register will be pulled from
the S stack. A byte is pulled from a stack by first reading the byte from
the memory location contained in the pointer, S, and then S is incremented
by one.

The RTI is usually the last instruction to be executed in an interrupt
handler program. Normally an interrupt will cause the E bit to be set or



cleared and then all (E=1) or just the PC and CC (E=0) registers are pushed
on the stack. Then the MPU executes the interrupt handler which, upon
completion, can return to the interrupted program by executing the RTI. The
RTI causes the MPU to resume processing at the point of interruption. All
the MPU’s registers will contain their original contents, if E was set by

the interrupt.

RTS Return from Subroutine
Source Forms: RTS
Operation: PCy;’ <- (8), §* <- S+1 Type: Miscellaneous

PC;’ <= (8), S’ <~ S+l
Addressing Modes: Inherent.
Condition Codes: Not affected.

Description: The RTS will pull the PC register from the S stack, causing

the MPU to start executing instructions at the new address in the PC

register. The RTS is typically the last instruction in a subroutine to be
executed. The MPU is directed to a subroutine with a BSR or JSR, which
stores the current PC contents in the S stack. The subroutine returns to

the main program by executing the RTS, which loads the PC register with the
return address from the S stack.

SBC Subtract with Borrow
Source Forms: SBCA; SBCB
Operation: R’ <- R-M-C Type: Arithmetic

Addressing Modes: Immediate; Direct; Extended; Indexed.
Condition Codes:
H - Undefined, therefore it could be in any state.
N - Set if bit 7 of the resulting byte is set; cleared otherwise. N set
indicates a negative signed binary number.
Z - Set if the resulting byte is zero; cleared otherwise.
V - Set if an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary numbers.
C - Set if a borrow is generated from bit 7 of the ALU; cleared
otherwise.

Description: A byte is read from a memory location, specified by the
operand field. That byte and the C bit, a borrow if set, are subtracted

from the contents of the A or B (SBCA or SBCB) register. The resulting byte
is routed back to its originating register. For example, address $1A07
contains $24, the A register contains $67 and the C bit is set. The
instruction: SBCA $1A07 performs the following subtraction:



b C is set
0110 0111 contents of A
-0010 01060 operand byte
C=0 0100 0010 new contents of A and C

The results: A contains $42 and C, N, Z, and V are cleared in the CC
register.

SEX Sign Extend
Source Forms:-SEX
Operation: Type: Arithmetic

If bit 7 of B is set, then A’ <- FF
If bit 7 of B is clear, then A’ <~ 00
Addressing Modes: Inherent.
Condition Codes:;
H - Not affected.
N - Set if bit 7 of the B register is set; cleared otherwise. N set
indicates a negative signed binary number resulted.
Z - Set if the result is zero; cleared otherwise.
V - Not affected.
C - Not affected.

Description; All the bits of the A register are set equal to bit 7 of the B
register. This instruction will cause the 8-bit signed binary number in the

B register to be expanded into an equivalent 16-bit signed binary number in
the D register. For example, the B register contains $E8, the signed binary
equivalent of decimal -24. The instruction: SEX results in the D register
containing $FFES, the 16-bit signed binary equivalent of decimal -24.
Remember that the D register is made up of the A and B registers; where the
A register is the upper half of the D register. In the CC register, the N

bit is set and the Z bit is cleared. ‘

ST (8 Bit) Store Register into Memory
Source Forms: STA P; STB P
Operation: M’ <- R+ Type: Data Movement

Addressing Modes: Direct; Extended; Indexed.

Condition Codes:
H - Not affected.
N - Set if bit 7 of the selected register is set; cleared otherw1se
Z - Set if the selected register contains zero; cleared otherwise.
VY - Always cleared.
C - Not affected.

Description: The contents of the A or B (STA or STB) register are stored in
the memory location specified in the operand field. For example, the B



register contains $01. The instruction: STB $220A stores $01 at address
$220A and, in the CC register, the N, Z, and V bits are cleared.

ST (16 Bit) Store Register into Memory
Source Forms: STD P; STX P; STY P; STU P; SIS P
Operation: M>M+1’ <- R Type: Data Movement

Addressing Modes: Direct; Extended; Indexed.

Condition Codes:
H - Not affected.
N - Set if bit 15 of the selected register is set; cleared otherwise.
Z - Set if the selected register contains zero; cleared otherwise.
V - Always cleared.
C - Not affected.

Description: The contents of a selected 16-bit register are stored in two
consecutive memory locations; the operand field specifies the first

location. For example, U contains $7D08. The instruction: STU $1A02 stores
the upper half of U, $7D, at address $1A02 and the lower half, $08, at
address $1A03. In the CC register, the N, Z, and V bits are cleared.

SUB (8 Bit) Subtract Memory from Register
Source Forms: SUBA P; SUBB P
Operation: R’ <- R-M Type: Arithmetic

Addressing Modes: Direct; Extended; Immediate; Indexed.
Condition Codes:
H - Undefined, so it may be in any state.
N - Setif bit 7 of the resulting byte is set; cleared otherwise. N set
indicates a negative signed binary number.
Z -Set if ‘the resulting byte is zero; cleared otherwise.
V - Set if ‘an overflow or underflow occurred; cleared otherwise. This
applies only to signed binary numbers.
C - Set if a borrow is generated by bit 7 of the ALU; cleared
otherwise.

Description: ‘A byte is read from a memory location specified by the operand
field. That byte is subtracted from the contents of the A or B (SUBA or
SUBB) register and the result is routed to the selected register. For

example, the A register contains $6A. The instruction with immediate
addressing: SUBA #3$27 -results in A containsing $43. This subtraction
process can be seen ‘as:

bbb
0110 1010 contents of A
- 00100111 immediate byte
01000011 new contents of A




In the CC register, the N, Z, and V bits are cleared.

SUB (16 Bit) Subtract Memory from Register
Source Forms: SUBD P
Operation: D’ <~ D-M:M+1 Type: Arithmetic

Addressing Modes: Direct; Extended; Immediate; Indexed.
Condition Codes:
H - Not affected.
N - Set if bit 15 of the result in the D register is set; cleared
otherwise. N set indicates a negative signed binary number.
Z - Set if the result in D is zero; cleared otherwise.
V - Set if a 16-bit overflow or underflow occurred; cleared otherwise.
This applies only to signed binary numbers. ,
C - Set if a borrow was generated by bit 15; cleared otherwise.

Description: Two bytes are read from two consecutive memory locations and
concatenated to form a 16-bit word. That 16-bit word is subtracted from the
contents of the D register and the result is routed back to the D register.

For example, the D register contains $072F, and bytes $04 and $16 are
stored at addresses $1500 and $1501. The instruction with extended
addressing: SUBD $1500 results in the D register containing $0319. This
operation can be seen as;

b
0000 0111 0010 1111 contents of D
- 0000 0100 0001 0110 memory operand
0000 0011 0001 1001 new contents of D

In the CC register, the C, N, Z, and V bits are cleared.

SWi Software Interrupt
Source Forms: SWI
Operation: Set the E bit then; Type: Miscellaneous

$' <~ $-1, (S) <- PC
S’ <- S-1, (S) <- PCy,

S <- S-1, (S) <- Uy,
S’ <= 8-1, (S) <- Uy
S’ <- 8-1, (8) <- Y,
S’ <= 8-1, (8) <- Yy
S* <- 8-1, (8) <- X,
S <= 8-1, (S) <- Xy
S’ <- §-1,(S) <- DP
S’ <-.8-1,(S) <- B

S <- S8-1, (S) <- A

S’ <- §-1, (S) <- CC



PC’ <~ ($FFFA):($FFFB)
Addressing Modes: Inherent.
Condition Codes. The I'and F bits of the CC register are set to mask out
any IRQ and FIRQ interrupts. The E bit is also set.

Description: First the E bit is set to indicate that all the registers

except S are stored in the stack. Then all the registers are pushed onto

the S stack, as in the operation diagram. Each byte is pushed onto the

stack by first decrementing the contents of S by one, then storing the byte

at the new address in S. After stacking the registers, the I and F bits are

set and the SWI vector address is read from addresses $SFFFA and $FFFB. This
vector address is in put into the PC register, causing the MPU to start
executing an instruction at that address.

SWiI2 Software Interrupt 2
Source Forms: SWI2
Operation: Set the E bit then; Type: Miscellaneous

S’ <- §-1, (S) <- PC
S <- §-1, (S)<—PC

S <- §-1, (S) <~ U,
§' <~ -1, () <- U
S <- 5-1, (8) <- Yy
S <- 8-1, (S) <- Yy
S <- 5-1, (8) <- X,
§* <- §-1, (S) <- Xy
§’ <- S-1, (S) <- DP
§ <- S-1, (S) <- B

$ <- 81, (S) <- A

S <~ §-1, (S) <- CC

PC <- ($FFF4):($FFF5)
Addressing Modes: Inherent.
Condition Codes: Only the E bit is set.

Description: First the E bit is set to indicate that all the registers

except S are stored in the stack. Then all the registers are pushed onto

the S stack, as in the operation diagram. Each byte is pushed onto the

stack by first decrementing the contents of S by one, then storing the byte
at the new address in S. After stacking the registers, the SWI vector

address is read from addresses $FFF4 and $FFF5. This vector address is put
into the PC register, causing the MPU to start executing an instruction at
that address. Note that the I and F bits are not affected, the IRQ and FIRQ
interrupts may or may not be masked out, depending on their previous state.



SWi3 Software Interrupt 3
Source Forms: SWI3
Operation: Set the E bit then; Type: Miscellaneous
S’ <~ §-1, (S) <- PC,
S’ <- §-1, (S) <- PCy

S <- §-1, (8) <- Uy,
S <- §-1, (S) <- U
S <- §-1, (S) <- YL
$ <- S-1, (8) <- Yy
S <- S-1, (8) <- X,
S <= 8-1, (S) <- Xy
S <- S-1, (S) <- DP
S <- 8-1, (S) <- B
S <- 8-1,(S) <- A

S <~ 8- l, (S) <- CC

PC’ <- ($FFF2):($FFF3)
Addressing Modes: Inherent.
Condition Codes: Only the E bit is set.

Description: First the E bit is set to indicate that all the registers

except S are stored in the stack. Then all the registers are pushed onto

the S stack as in the operation diagram. Each byte is-pushed onto the stack
by first decrementing the contents of S by one, then storing the byte at

the new address in S. After stacking the registers, the SWI vector address

is read from addresses $FFF2 and $FFF3. This vector address in put into the
PC register, causing the MPU to start executing an instruction at that
address. The T and F bits are not affected, so the IRQ and FIRQ interrupts
may or may not be masked out, depending on their previous state.

SYNC Synchronize to External Event
Source Forms: SYNC
Operation: The MPU stops and waits Type: Miscellaneous

untilan interrupt occurs.
Addressing Modes: Inherent.
Condition Codes: May be affected by unmasked interrupt.

Description: This instruction causes the MPU to stop executing instructions
and wait for an interrupt. Upon receiving an interrupt, if it is masked out
or the interrupt signal is low for less than three cycles, the MPU resumes
processing with the next instruction. A cycle refers to how often the

pulses occur on the E and Q clock pins. In the Color Computer, a cycle is
about 1.12 microseconds, or 1.12 millionths of a second. Upon receiving an
unmasked interrupt that lasts more than three cycles, the MPU will perform
the interrupt sequence, causing the MPU to execute the interrupt handler
program. When the MPU is in the stopped state, the address and data bus



signals from the MPU are electrically disconnected from the address and
data buses so some other device can use the buses.

For example, if one wanted to increment a counter every time an IRQ
interrupt occurred and the interrupts occurred in very rapid succession,
the following program could be used.

ORCC #3510
WAIT SYNC

INC COUNT

BRA WAIT

The ORCC sets the I bit, masking out the IRQ interrupt. The SYNC
instruction causes the MPU to wait until an interrupt occurs. Upon

detecting the interrupt, processing continues by incrementing the COUNT and
branching back to the SYNC to wait for another interupt.

TFR Transfer Register to Register
Source Forms: TFR R..R,
Operation: R, <- R, Type: Data Movement

Addressing Modes Register.

Condition Codes: Not affected unless R,, the destination register, is the
CC register. In that case, any bits can be set or cleared in the CC
register.

Description: The contents of the source register, R,, are transferred

into the destination register, R,. Both registers must be of the same

length, both eight or 16 bits Iong The registers to be used are designated

by their abbreviation in the operand field. The abbreviations are: A, B,
CC,DP, D, X, Y, U, S, and PC. For example, the A register contains $8C and
the DP register is clear. The instruction; TFR A ,DP results in the A and DP
registers containing $8C.

TST Test
Source Forms: TST Q; TSTA; TSTB
Operation: TEMP <- M-0 or TEMP <- R-0 Type: Test

Addressing Modes: Inherent; Extended; Indexed; Direct.
Condition Codes:
H - Not affected.
N - Set if bit 7 of the byte being tested is set; cleared otherwise.
Z - Set if the byte being tested is zero; cleared otherwise.
V - Always cleared.
C - Not affected.

Description: A byte is read from memory (TST Q) or the A or B (TSTA or
TSTB) register and a value of zero is subtracted from it so the ALU can set



or clear bits in the CC register. Neither the memory nor accumulator
contents are changed. All this instruction really tells us is whether the
byte has bit 7 set (N=1) or any bits set (Z=0). For example, The A register
contains $80. The instruction: TSTA results in the N bit set and the Z bit
cleared.

FIRQ Fast Interrupt Request
Operation: If F bit clear, then: Type: Hardware Interrupt
S’ <- 8-1, (8) <- PCy,
S* <- 8-1, (8) <- PCy
Clear E bit
S <- S-1, (S) <- CC
Set F and I bits
PC’ <~ ($FFF6):(3FFF7)
Addressing Modes: Inherent.
Condition Codes: The E bit is cleared and the F and I bits are set.

Description: The occurrence of an FIRQ interrupt, if the F bit is clear,

will cause the MPU to start the FIRQ interrupt sequence upon completion of
the currently executing instruction. In the interrupt sequence, first the
contents of the PC register are pushed on the S stack. Then the E bit is
cleared and the CC register is pushed on the S stack. The F and I bits are
set to prevent any further FIRQ and IRQ interrupts. Finally, the FIRQ
vector address, read from addresses $FFF6 and $FFF7, is loaded into the PC
register, causing the MPU to start executing the instruction at that

address. Since only the PC and CC registers are pushed on the stack, this
interrupt sequence is the fastest.

IRQ Interrupt Request
Opeation: If I bit clear, then: Type: Hardware Interrupt
S’ <- §-1, (S) <- PC,

§ <= §8-1, (8) <~ PCy
S’ <-8-1, (S) <- Uy,
S’ <= §-1, (S) <- Uy
S <~ 8-1,(S)<- Y
S’ <- 8-1, (8) <- Yy
S’ <- 8-1, (5) <- X,
S <~ §-1,(8) <- X
S’ <- S-1,(S) <- DP
S <-§-1,(S) <- B
S <~ S-1, (S) <- A
Set E bit

S <-8-1,(S) <- CC
Set I bit

PC’ <- ($FFF8).(3FFF9)



Addressing Modes: Inherent.
Condition Codes: The E and I bits are set.

Description: The occurrence of an IRQ interrupt (if the I bit is clear)

will cause the MPU to start the IRQ interrupt sequence upon completion of
the currently executing instruction. In the interrupt sequence, first the
contents of all the MPU registers, except the S and CC, are pushed ont the

S stack. Then the E bit is set and the CC register is pushed on the S

stack. The I bit is set to prevent any further IRQ interrupts. Finally, the

IRQ vector address, read from addresses $FFF8 and $FFF9, is loaded into the
PC register, causing the MPU to start executing the instruction at that
address.

NMI Non Maskable Interrupt
Operation: §’ <- S-1, (S) <- PC,, Type: Hardware Interrupt

S’ <- S-1, (S) <- PC

S <- 8-1, (8) <- Uy,

S’ <- §-1, (8) <- Uy

S’ <- §-1, (S) <- Y.

S <= 8-1, (8) <~ Yy

S’ <= 8-1, (S) <- X,

S <- 8-1, (8) <- Xy

S’ <- S-1, (S) <- DP

S <- S-1,(S)<- B

S’ <-'§-1, (S) <- A

Set E bit

S’ <~ §-1, (S) <- CC

Set I and F bits

PC’ <- ($FFFC):($FFFD)
Addressing Modes: Inherent.
Condition Codes: The E, F, and I bits are set.

Description: The occurrence of an NMI interrupt will cause the MPU to start
the NMI interrupt sequence upon completion of the currently executing
instruction. In the interrupt sequence, first the contents of all the MPU
registers, except S and CC, are pushed on the S stack. Then the E bit is

set and the CC register is pushed on the S stack. The I and F bits are set

to prevent any further IRQ or FIRQ interrupts. Finally, the NMI vector
address, read from addresses $FFFC and $FFFD, is loaded into the PC
register, causing the MPU to start executing the instruction at that

address.

The NMI interrupt can not be masked out by setting any of the CC
register bits. The only time it is prevented is after a RESET operation
before the S register has been loaded. However, if an NMI occurs during
this time, its occurence is remembered. When the S register is finally



loaded, the NMI interrupt sequence will begin.

RESET Hardware Reset
Operation: SET I and F bits Type: Hardware Interrupt
DP’ <- 00
PC’ <- ($FFFE).($FFFF)
Addressing Modes: Inherent.
Condition Codes: Only the F and I bits are set.

Description: A RESET will cause the MPU to start the RESET sequence. In the
sequence, first the F and I bits are set. The DP register is cleared and

the PC register is loaded with the RESET vector address, read from

addresses $FFFE and $FFFF. Then the MPU starts executing the instruction at
the vector address. The RESET is normally the first operation performed

when a microcomputer is turned on. It is also initiated by pressing the

RESET button on the Color Computer.



CHAPTER 6

Assembly Programming with EDTASM+

Assembly programming requires a technical knowledge of your computer; you
must also use and understand the operation of a text editor, an assembler,
and debugging aids.

The text editor is a program that controls the computer while one
enters the text; displays the text on the screen; and lets you edit or
modify previously entered text. You should be familiar with the BASIC text
editor by which you enter or modify BASIC statements. In assembly language,
the text editor is used to enter assembly language statements, or the
source code. The text editor can usually store the source code on cassette
tape or disk, and read source code from tape or disk into memory for
display and/or further editing. There is also the capability of printing
the source code on a printer.

The assembler is the program that will scan or read through the source
code and generate object code. The assembler can be directed to put the
generated object code in memory so the microcomputer can execute it, to see
if the program works. It can also be directed to store the object code on
tape or disk, so it can be loaded into memory and executed at some other
time.

Debugging aids help the programmer determine why a program does not
work as desired. It is inevitable that a program of any size will initially
contain errors or bugs. Debugging aids provide ways to check or monitor a
program’s operation. Debugging aids often are able to display or change the
contents of memory, control program execution, and store or read the object
code to or from tape or disk.

Throughout this book we will use Radio Shack’s EDTASM+ ROM pack to
demonstrate editing, assembling, and debugging. It is similar to most other
packages that provide for editing, assembling, and debugging, but supports



storing and reading data to and from cassette tape only. When the EDTASM+
ROM pack is plugged in, it and Extended Color BASIC are structured as seen
in Fig. 6-1. Each block represents a functional mode of operation; the

arrows show how to get from one mode to another. The command that must be
entered to cause transition to another mode appears on each arrow. Note

that the assembler, upon completion of the assembly, automatically returns

to the editor.
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Fig. 6-1 Block Diagram of BASIC and EDTASM+ Functions.

Before writing any program one must have determined the sequence of
steps or algorithm to be performed to arrive at a solution. This is
especially important in assembly language programming because each
instruction accomplishes very little. The technique of constructing a
sequence of steps is called flowcharting. To familiarize yourself with or
review flowcharts, refer to Appendix A. EDTASM+ will detect most errors
when an improper entry is made, or some other problem arises. The EDTASM+
manual, Radio Shack catalog number 26-3250, provides a good explanation of
the error messages in its Appendix D.

THE TEXT EDITOR

The source code is entered from the editor mode. If the EDTASM+ module
is plugged in, the Color Computer will be in the editor mode when first
turned on. This can be verifed by observing the * prompt displayed at the
lefthand edge of the screen. Source code is made up of -a number of
statements; each statement or line may contain up to five fields as
follows:

Stmt No Symbol . Cnd Operand - Comment

The statement number is a whole number that can range from 0 - 63999. A
series of statements are numbered so that the first statement has the



lowest number and each suceeding statement has a higher number. Statement
numbers do not have to be incremented by one for each consecutive
statement. A series of statement numbers can be 10, 20, 30. When entering
the statements, the editor will automatically supply the next statement
number, thus relieving you of this task.

In the symbol field can be put the symbol, name, or label. The symbol
may be up to six characters long; its first character must be alphabetic
and the rest can be alphabetic or numeric. No special characters (such as
%, #, or ?7) may be in the symbol. The symbol will be assigned an address or
value by the assembler, so the programmer does not have to use exact
hexadecimal addresses. A symbol that has been defined (used once in the
symbol field) can be used in the operand field to represent the desired
address.

The command (or operation) field contains an instruction mnemonic or
the mnemonic of a pseudo-operation. Pseudo-operations are commands to the
assembler, covered later in this chapter. The instruction mnemonic in a
command field directs the assembler to generate the machine code for that
instruction.

The operand field may contain an address or the symbol of an address,
or immediate data or the symbol for the immediate data to be used by the
assembler to generate the the machine instruction operand field. The
operand field may-also contain abbreviations of registers used in indexed
or register addressing.

In the comment field is the programmer’s comment or reminder of what
this particular instruction accomplishes.

When in the editor, start entering statements by using the insert (I)
command. The editor will provide the first statement number, 100, and the
first statement can be entered. The editor defaults to 100 or the next
available number for the statement number, and an increment of 10 for
succeeding statement numbers. The editor assumes that all numbers entered
are decimal unless specified otherwise. Indicate a hexadecimal number by
prefixing it wth §.

Now the symbol can be entered, if desired. Then the cursor can be
positioned to the command field by hitting the right arrow or tab (->) key,
where the mnemonic can be entered. After entering the mnemonic the
statement can be terminated by hitting the ENTER key, or an operand can be
entered with a space between it and the command. The statement can again be
terminated by hitting the ENTER key, or the cursor can be moved to the
comment field by hitting the right arrow key, where the comment can be
entered. The statement is finally completed by hitting the ENTER key, which
results in the presentation of the next statement number. Each field must
be separated by a space or tab and the statement must be ended by the ENTER
key. An example of this is:



I <ENTER> (invoke insert command)
00100 BEG LDA #320 LOAD CODE <ENTER>

00110 CLRB CLEAR COUNTER <ENTER>
00120 STA $1203 STORE CODE <ENTER>
00130 END <ENTER>

00140 <BREAK> (exit insert command)

These statements are now in the buffer, an area of memory reserved
for holding entered text lines. The maximum allowable length of a statement
line is 128 characters. Statement 130 contains the pseudo-command END,
which tells the assembler that this is the end of the source code to be
assembled. Upon completion of entering text, hitting the BREAK key will
exit the insert command. When fields are to be skipped, as in statement
110, the right arrow key is pressed repeatedly until the cursor is at the
desired field. Since only 32 characters can be displayed on one line with
EDTASM+’s editor, statements will wrap around on the screen.

A statement which is all comment can also be entered by beginning it
with an asterisk (¥). After the asterisk any text can be entered. These
comment lines usually serve to describe the program and are ignored by the
assembler. For example, the following comment lines can be appended to the
above statements:

I70 <ENTER>

00070 *THIS IS AN EXAMPLE OF <ENTER>
00080 *USING THE TEXT EDITOR <ENTER>
00090 *iErkxkriridikrtirtisx ENTER>

At this point a NO ROOM BETWEEN LINES message would be displayed,
meaning that the next statement, 100, has already been entered. The 70
after the I tells the insert command that the next line to be entered is
number 70. The insert command can also be used to enter text to be used for
other purposes. For example, BASIC statements or just plain text can be
entered; remember however that the assembler can not do anything meaningful
with it.

The total listing can be displayed on the screen with the print (P)
command:

P70:130 <ENTER>

This will list lines 70 - 130. Notice line 90; its purpose is to visually
separate the descriptive text from the command statements.

The entered source code can be written to cassette tape using the
write (W) command. This will record the text buffer contents using the
Color Computer’s ASCII code for each character. The W command can contain
a name for the recording or file; the name must begin with an alphabetic
character and may be up to eight characters long. If a name is not



provided, it will be assigned the name NONAME. For example, make the
cassette ready for recording and enter:

W EDITEST <ENTER>
READY CASSETTE <ENTER>

This will cause the statements in the buffer to be written to cassette tape
with the name of EDITEST.

Source code should be saved on cassette tape before assembling and
executing it since it can be easily lost. An assembly language program
takes complete control of the microcomputer and the source code may be
destroyed if there is a programming mistake in it.

The verify (V) command should be used to see that the text recording
on cassette can be successfully read back. Position the cassette tape to
the beginning point of the recording and ready it for playback. The verify
command is initiated by typing:

YV <ENTER> )
READY CASSETTE <ENTER>

This causes the next file on tape to be checked for a valid recording. This
is similar to BASIC’s SKIPF command. If the recording is good, no message
is printed. If the recording is faulty, a message will be printed on the
screen. If that happens, try recording at a different place on the tape or
on another tape.

The delete (D) command will delete selected statements from memory:

D70:130 - <ENTER>

This causes our previously entered listing, statements 70 - 130, to be
completely deleted.

The load (L) command is used to read a previously stored source code
from cassette. First position the tape to the starting point of the
recording and make it ready for playback. Then enter:

L <ENTER>
READY CASSETTE <ENTER>

The next file from tape will be read into the buffer area. The print
command can be used to list what was just read in.

An interesting point is that files recorded with the editor’s write
command can be read using BASIC’s CLOAD command. Also, files written
with BASIC’s CSAVE "XXX",A command can be read with the editor’s
load command.



Text Editor Commands

The following section will describe all EDTASM+ text editor commands,
presented in alphabetical order. Special symbols will also be described.
EDTASM+’s text editor is versatile in its wide array of commands and can be
used for other purposes, such as entering and/or editing BASIC program
statements, or as a line-oriented word processor.

= Special Symbols

A colon is used to separate the beginning line number from the ending
line number in a command that designates a range of lines to be acted upon.
For example, the command to list lines on the screen: P100:200 will list
text lines 100 - 200, if available.

The pound sign (#) represents the lowest line number that is in the
buffer. For example: P#:150 will list text lines starting from the lowest
numbered through line 150.

An asterisk represents the highest or last line number in the buffer.
For example: P#:* will list all the text lines.

A period represents the current or most recently accessed text line
number. For example: P100:. will list lines 100 through the current line.

An exclaimation point indicates that the following number states how
many lines are to be acted upon. For example: P100!3 will list three lines
starting with line number 100.

m Going to BASIC

One can get to BASIC from the text editor by typing Q and the ENTER
key. This initializes BASIC and displays its header on the screen. In the
process, any text in the editor’s buffer is deleted, but object code in
areas of memory that BASIC does not use will not be deleted. From BASIC,
control can be returned to the editor by entering:

EXEC &HC000 or EXEC 49152

Either command causes the MC6809E to start executing instructions at
address $C000, the starting address of EDTASM+. During transitioning from
BASIC to EDTASM+, any BASIC statements in memory will be deleted.

m Copy - Form: CXXX,YYY:ZZZ,TTT

The copy command will copy a range (YYY = ZZZ) of lines to a starting
line number (XXX) with an increment of TTT. For example: C600,100:200,5
will copy lines 100 - 200 to the starting line number 600, and the line
increment will be five. The original lines 100 - 200 are unchanged. An
attempt to copy lines over others will not be executed, and an error
message will be displayed.



m Delete - Forms: DYYY:ZZZ or DYYY or DYYY!TT

The delete command will delete a statement or a series of statements
from the buffer. For example: D210 will delete line number 210; D200:310
will delete lines 200 - 310; D100!5 will delete 5 lines, starting with 100.

m Edit - Form: EYYY

The edit command will allow you to edit statement or line number YYY.
For example: E120 causes line 120 to be displayed with the cursor
positioned below it. Any editing subcommand can now be initiated to start
editing that line. The editing subcommands are:

A Restarts the edit with the original unchanged line.
nCxxx.. Changes n characters to string xxx.. starting at the cursored
position. If n is omitted, only the cursored character is

changed.

nD Deletes n characters starting at the cursored position. If n is
omitted, only the character at the cursored position is
deleted.

E Ends the editing process and enters any changes, but does not

display the rest of the line.
ENTER Ends the editing process and enters any changes, and displays
the rest of the line.

H Deletes rest of line from cursored position to the right and
allows the addition of any new text.
Ixxx.. Inserts the string xxx.. starting at the cursored position.

Pressing the <- key will delete the character at a cursored
position when in this subcommand.

nKx Deletes all text from the cursored position to but not
including the nth occurrence of character x.

L Displays line being edited in its current form.

Q Exits the edit mode and leaves the line in its original form.

X Moves the cursor to the end of the line where more text can be
entered.

Shift 4  Exits from edit subcommand.
n space Moves cursor n positions to the right. If n is omitted, each

bar depression of the spacebar will move the cursor one position
to the right.
n <- Moves the cursor n positions to the left. If n is omitted the
cursor will move one position to the left for each depression
of the <- key.

m Find - Form: Fxxx... or F

The find command will initiate a search for the text string Xxx...
starting with the line after the current line. It will stop each time the
string is found and display the line containing the string. The search can



be initiated again by entering F, which will use the last defined search
string. If a search does not find the string, a message so indicating will

be displayed. For example: FANDA will search for the string ANDA starting
with the line after the current line.

B Insert - Forms: I or IXXX or IXXX, TTT

The insert command opens the text buffer allowing text lines to be
added or inserted. XXX specifies the starting line number, but if it is
omitted, the editor will present 100 or the next available line number. TTT
specifies the line increment, but if it is omitted, the editor will use 10
or the last specified increment.

m Load - Forms: L or LXXXXXXxX

The load command will read a text file named xxxxxxxx from cassette
tape into the buffer. If a name is not provided it will read the next file
on tape. The name can be up to eight characters long, and the first
character must be alphabetic. An interesting feature of the load command is
that it does not empty the buffer before loading it. Therefore, one can
read a file that will be appended to the current contents of the buffer.
This is useful for programs written in sections. A limitation is that the
line numbers of the text read in must be different than the line numbers
currently in the buffer.

® Print - Forms: PXXX or PXXX:YYY or PXXX:TTT

The print command will list a line or series of lines in numerical
order on the screen. A long listing can be temporarily halted by typing
shift and @ concurrently, allowing certain lines to be read before they are
scrolled off the screen. Listing is resumed by depressing any key except
BREAK (which will cancel the print command). Examples of the print
command are: P180 lists line 180; P160:330 lists lines 160 - 330; P205!62
lists 62 lines starting with line 205.

m Printer Commands - Forms: TXXX or TXXX:YYY or TXXXI!TTT and
HXXX or HXXX:YYY or HXXX!TTT
These commands will print the text in the buffer to a printer. The
lines to be printed are specified the same as for the print (P) command.
The print (H) command will list specified lines in their entirety to
the printer. The print (T) command will list specified lines without their
line numbers to the printer. This command would be used if the text editor
were being used as a word processor.

® Renumber - Forms: N or NXXX or NXXX, TTT

The renumber command will assign new numbers and increments to all the
lines in the buffer. XXX specifies the new starting line number and TTT
specifies the new increment. If XXX is omitted, 100 or the current line



number is used. If TTT is omitted, 10 or the current increment it used. For
example: N300,20 will renumber all the lines so the first is 300 and the
increment is 20.

m Replace - Forms: R or RXXX or RXXX, TTT

The replace command allows one to replace line XXX and insert new lines
with an increment of TTT. If the line number is omitted the replacement
will start with the current line. If the increment is omitted, the
replacement will use the last specified increment. For example: R120,2
allows one to reenter line 120 and insert new lines starting with number
122.

m Verify - Forms: V or VXXxxxxxx

The verify command will read the cassette text file named XXXXXXxx,
checking to see that it was recorded without errors. If the file name is
omitted it will verify the next text file on tape. If no errors are
detected, no message is displayed. If errors are detected, a message so
indicating is displayed.

m Write - Forms: W or WXXXXXXXxx

The write command will record the text buffer contents on cassette tape
with the file name xxxxxxxx. The name may be up to eight characters long
and the first character must be alphabetic. If a file name is not provided,
the editor will give it the name NONAME.

m Going To ZBUG

Typing Z and the ENTER key will cause a transition from the editor mode
to ZBUG, the debugging mode. The # prompt at the left hand edge of the
screen indicates that ZBUG is in control. Typing E and ENTER, while in
ZBUG, causes a transition to the editor mode. The contents of the text
buffer will not be affected by either transition.

m Scroll Up and Down

The scroll command will cause the previous or next text line to be
displayed. Successive depressions of the up arrow key will cause the
previous text line to be displayed followed by the lower numbered lines in
declining numerical order. Successive depressions of the down arrow key
will cause the next line to be displayed followed by the higher numbered
lines in ascending numerical order.

THE ASSEMBLER

The assembler can only be activated from the editor by the assemble (A)
command. Upon activation, the assembler will read through the statements in
the buffer, starting with the first or lowest numbered and stopping at the
first encounter of a statement with an END command. The output of the



assembler will be a listing of the source code, object code, and symbol
table, and the object code in memory or on cassette tape.

Assembling Into Memory :

Before assembling the source code must be in the text buffer. It can be
put there by typing it in or by loading it from tape. In this case the
previous example of source code will be used to demonstrate the assembler.
The source code is:

00070 *THIS IS AN EXAMPLE OF
00080 *USING THE TEXT EDITOR
0009Q kst kst sk skokok o sk ook

00100 BEG LDA #§20 LOAD CODE

00110 CLRB CLEAR COUNTER
00120 STA $1203 STORE CODE
00130 END

Note that statement 130 contains the END command, telling the assembler to
stop there.

The assembler is initiated in the editor with the assemble command and
any of its options. The options let one control certain aspects of the
assembly process. The options are presented-in - Table 6-1. To have the
assembler put the generated object code in memory, the in-memory (IM)
option is used:

A/IM  <ENTER>

The assembly process will be performed, a symbol table is built, a listing
is displayed, and the object code put in memory.

The listing generated by the assembler provides much information about
the assembled program. The listing resulting from assembling the above
source code in memory is:

00070 *THIS 1S AN EXAMPLE OF

00080 *USING THE TEXT EDITOR
00090 **kkskokokdokkseddkokskodok ok

08A6 86 20 00100 BEG LDA #3520 LOAD CODE
08A8 5F 00110 CLRB CLEAR COUNTER
08A9 B7:1203 00120 STA $1203 STORE CODE

0000 00130 END

00000 TOTAL ERRORS
BEG 08A6

Unfortunately, the listing on the screen will not appear exactly like
this because of wrap-around. The middle and right sides of the listing are



just a repeat of the original source code, lines 70 - 130. To the left of

each statement that contains a valid command mnemonic and operand is its
object code. In the leftmost column is the exact hexadecimal address, or
absolute address, where that machine instruction has been placed. At
statement 100 is the absolute address of $08A6, the starting address where
the LDA instruction is stored. In the next column is the op code of the LDA
instruction; $86. The following column is the operand field of the
instruction, $20, located at the absolute address $08A7. The next line down
shows the single byte $5F, which is the CLRB instruction located at

absolute address $08A8. The last instruction, STA, is located in addresses
$08A9 - $08AB. The final END statement generates no object code, but does
terminate the assembly process. This type of listing, with the source and
object code on the same line, is called a side-by-side listing.

Immediately following the END statement appears the total number of
errors the assembler detected in the source code. Almost always the errors
are mistakes made entering the source code, such as misspellings,
incorrectly used statement fields, a reference to undefined symbols, or
defining a symbol more than once (multiply defined). A symbol is defined
when it is used in the symbol field. A symbol is referenced when it is
used in the operand field. The symbol BEG was defined in statement 110 but
not referenced anywhere in the program. An assembly is not considered
satisfactory if there are any errors, because the assembler will not
assemble statements containing an error.

The last printed item is the symbol table. This is a list of all the
symbols defined in the program and their assigned values. In this example
there is only one symbol, BEG, the starting address of the program. In the
symbol table BEG is followed by its asssigned value, $08A6. U will be
printed to the right of an undefined symbol. M will be printed to the right
of a multiply defined symbol. S will be printed to the right of a symbol
defined by the SET pseudo-command (covered in the Pseudo-Commands
section of this chapter). A symbol in the symbol field, if the mnemonic is
that of a machine instruction, is always assigned the value of the address
at which that machine instruction resides.

While the assembly process is taking place, the output listing scrolls
up the screen quite quickly. You can halt it by quickly pressing the shift
and @ keys together. The assembly will resume when you press any key except
BREAK.

A useful option is the wait on error (WE) option. This will halt the
assembly process when an error is detected so you can view the erroneous
line on the screen. Hitting any key except BREAK will cause the assembly to
resume to completion or until another error is detected. The command:
A/IM/WE will begin assembling into memory and halt on detected errors.
The assembler does not change the source code. One can initiate the
assembler a number of times to see the screen listing. One can also edit
source code mistakes and then assemble it again.



Assembling To Cassette Tape

The assembler is directed to put the object code on tape by not using
the in-memory (IM) option. A file name up to eight charcters long can be
specified for the object code recording; the first character must be
alphabetic. If a name is not specified, the assembler defaults to the name
NONAME. For example:

A TEST1 <ENTER>
READY CASSETTE <ENTER>

will cause the assembly process to be performed. The object code is
recorded on cassette with the name TEST1, and the listing is put on the
screen. The object code can later be loaded into memory using BASIC’s
CLOADM command or ZBUG’s load (L) command. Using the previous
assembly language example, the listing would appear as:

00070 *THIS IS AN EXAMPLE OF
00080 *USING THE TEXT EDITOR

00090 dookok deoskdkokok sk sk ok sk kok sk sk ok sk k kok

0000 86. 20 00100 BEG LDA #5320 LOAD CODE

0002 5F 00110 CLRB CLEAR COUNTER

0003 B7 1203 00120 STA $1203 STORE CODE
0000 00130 END

00000 TOTAL ERRORS
BEG 0000

Except for the address column at the extreme left, this listing is
identical to that generated when assembling into memory. When assembling on
tape the addresses of the instructions in the listing are relative
addresses. An absolute address can not be assigned because the
instructions are not in memory. The asssembler defaults to a starting
address of 0000. The object code can be later loaded into memory starting
at almost any address using the CLOADM command. The absolute addresses
can then be manually calculated by adding the relative addresses to the
load address. For example, the following command will load the object code
into memory starting at address $2A10: CLOADM "TEST1",&H2A10.
The absolute address of each instruction is found by adding its relative
address to $2A10. The first instruction would be at $2A10, the second at
$2A12, and the third at $2A13.

Other options can be used, such as the wait on error (WE): A TEST1/WE.
This will stop the assembly at an erroneous statement. Again, an erroneous
statement will not be assembled.



The Assembler Options

There are nine assembler options. We have discussed two of them, IM and
WE. The LP, NL, NS, and SS options affect only the assembly listing, but
the total errors will always be displayed or printed.

Option Description

LP Put assembly listing on printer.
NL Suppress listing except for symbol table.
NS Delete symbol table from listing.

SS Use short screen format for listing.
NO Do not generate any object code.
M Assemble object code into memory.

WE Wait on errors.

AO Assemble object code at absolute address.
MO Use manually entered addresses.

Table 6-1 Assembler Options and Descriptions.

The LP option causes the listing to be printed on a printer connected
to the serial port. Examples of using the LP option are:

A TEST/LP
A/IM/LP

The NL option suppresses the source code and object code sections of
the listing so only the total errors and symbol table are displayed or
printed. Examples are:

: A/IM/WE/NL
A TEST2/NL

The NS option keeps the symbol table from being printed or displayed at
the end of the listing. Examples are:

A/IM/NS
A TEST/NS

The short screen (SS) option causes the listing to be printed or
displayed in a way that wrap-around is less likely to occur. The listing
lines are formated so that the object code is put on one line and its
associated source code is put on the next line. Examples are:

A TEST1/WE/SS
A/IM/WE/SS



The NO option causes the assembler to produce no object code. This
option could be used to perform an initial check for source code errors. It
can also be used to generate a spare listing on the printer. Examples are:

A TEST1/NO/WE
A/IM/NO

The IM option directs the assembler to put the generated object code in
memory. That program can then be easily executed from ZBUG to see how it
runs. First save the source code on tape so it will not be lost if the '
program destroys what is in the text buffer. If the IM option is not used
the object code will be recorded on tape, from where it can later be loaded
and executed.

The WE option directs the assembler to halt if a statement with an
error is encountered. Assembling resumes after you hit any key except
BREAK, which cancels the assembly process and returns to the editor.

The absolute origin (AO) option is used with the IM option only if an
ORG command is in one of the statements. This option is not necessary when
assembling to tape. The AO option causes the object code generated from the
statements following the ORG statement ‘to be put in memory starting at the
address in the operand field of the ORG statement. An example is:

00100 ORG $2Bl1A
00110 START CLRA
00120 STA $3001
00130 END

The ORG statement can not have a symbol. Now the following command
can be entered: A/IM/AQ. This causes the object code to be put in
memory, starting at address $2B1A. (See the description of the ORG command
in the Pseudo-Command section of this chapter for more information.)

When assembling to tape, this causes the object code generated from the
statements following the ORG statement to be put on tape with an absolute
address assigned to them. In this case, the side-by-side listing will
contain absolute addresses.

The manual origin (MO) option, used only with the IM option, lets one
specify where in memory the source statements and symbol table will be
stored and where the object code will be put. This lets you put the object
code where the source code and symbol table normally reside, or to use the
graphics capabilities, which require the memory area in which the source
code and symbol table normally reside. (This is discussed in more detail in
the Technical Details section of -this chapter.)



Pseudo-Commands

The pseudo-commands direct the assembler to perform operations beyond
generating machine instructions. The pseudo-commands are represented by
mnemonics used in the command field of a statement. They can perform the
functions of controlling the assembler, defining symbols,. putting data in
memory, and reserving an area of memory for use by the assembled program.

The pseudo-commands do not use any of the MC6809E addressing modes.
They have their own formats. The operand field may contain an expression
using octal, decimal, or hexadecimal numbers, a string of text characters,
or items involving calculations. The calculations that can be performed and
their formats are the same as those in ZBUG. (For more information about
the possible calculations, see the ZBUG section of this chapter.) A
description of each pseudo-command and its mnemonic follows in alphabetical

order.

m END - Form:

END EXPRESSION

The END command indicates that no more statements are to be assembled.
This command is put at the end of a series of statements to be assembled.

For example:

00100 START LDX #%400

00110 ST1
00120
00130
00140

STA , X+
END

CMPX #$600
BLO STl

This causes only statements 100 - 120 to be assembled. When assembling on
tape with an ORG command an expression can be put into the operand field to
specify the address of the first instruction to be executed. This address

will be stored in the object code file with the ORG address. The two

addresses are used by BASIC’s CLOADM and EXEC commands. For example:

00100
00110 BEG
00120
00130 BEI
00140
00150
00160
00170

ORG $3010
LDX #3400
LDA #§$20
STA X+
CMPX #35FF
BLS BEI

‘RTS

END $3015

The object code file generated with A NAME can be loaded and executed
in BASIC with the following commands: CLOADM and EXEC. These will cause
the program to be loaded at address $3010 and execution to start at the
instruction in address $3015. No addresses have to be specified with the
BASIC commands since they are read from tape.



® EQU - Form: SYMBOL EQU EXPRESSION
The equate command defines a symbol by assigning to the symbol the

value of the expression. All symbol values are made up of two bytes. The
expression must be or result in a value that can be represented in two
bytes. If the value is too large, the most significant bytes will be
dropped until what is remaining will fit in two bytes. Sample statements
are:

00100 AGE EQU 88§

00110 NUM! EQU $7F2E

00120 PAGE - EQU 7%30A

00130 LDA >AGE

00140 END

Assembling the example will result in a symbol table in which the symbol
AGE equals $0058 (the equivalent of decimal 88), NUMI1 equals $7F2E, and
PAGE equals $0046 (the equivalent of the product of decimal seven and $A).
Statement 130 is an example of referencing a symbol. The LDA with extended
addressing will be assembled with an operand address which points to the

two byte symbol AGE.

# FCB - Form: SYMBOL FCB EXPRESSION
The FCB (fix contents of a byte) command stores the value of the
expression in a memory location at the current address. The symbol is
optional. If a symbol is provided, it is defined (put in the symbol table
and assigned the value of the current address). A sample source code using
the FCB command is:
00100 STR CLRA

00110 STA $2E0I
00120 CNT FCB §1F
00130 FCB 73
00140 END

When assembled, statement 120 will put $1F in memory immediately following
the STA instruction, and the symbol CNT will be put in the symbol table
with the value of that memory address. Statement 130 will result in $49 in

the memory location after $1F. This is a poor program example since the
MPU, upon completing the STA instruction, will try to execute the data $1F
and $48.

® FCC - Form: SYMBOL FCC DELIMITER STRING DELIMITER
The FCC (fix contents with characters) command stores characters
between the delimiters, using ASCII, in memory starting at the current
address. The delimiters identify the text string and can be any character
not used in that text string. FCC can be used to store messages in memory
to be displayed on the screen by the program. The symbol is optional. If



used, it is defined.

00280 LDB >LINE

00250 JMP $201B

00300 LINE FCC !ENTER TODAY’S DATE!
00310 END

When assembled, the ASCII codes of the characters in the text string will
be put in memory immediately after the JMP instruction. Also, the symbol
LINE will be put in the symbol table with the value of the starting address
of the text string in memory.

m FDB - Form: SYMBOL FDB EXPRESSION

The FDB (fix double byte) command stores the value of the expression in
two consecutive bytes, starting at the current address. If a symbol is
provided, it is defined. Examples are:

00210 YEAR FDB 1983
00220 DAT FDB YEAR.DIV.4
00230 END

Statement 210 results in $07BF, the equivalent of decimal 1983, stored in
two memory locations immediately after the preceding instruction. Statement
220 results in the hexadecimal equivalent of the address the YEAR symbol
equals divided by four with no remainder stored in the next two memory
locations. Also the symbols YEAR and DAT will be assigned the addresses of
their respective two-byte fields.

m ORG - Form: ORG EXPRESSION

The ORG (originate) command indicates to the assembler where to
originate the object code. The originating address is the value of the
expression. When assembling into memory using the ORG command the AQO
option must be used. The object code of statements after an ORG statement
is put in memory starting at the address specified by the expression. More
than one ORG statement can be in the source code. An ORG command must be
the first statement or the assembler will try to put the object code in
memory starting at address zero, which is used by EDTASM+. For example:

00090 ORG §1000
00100 ORCC #3550
00110 LDX #$2000
00120 ORG $1700
00130 STA $3F02
00140 LDD X++

00150 END



This is assembled in memory with the A/IM/AO command; the object code of
statements 100 and 110 is stored starting at address $1000 and the object
code for statements 130 and 140 is stored starting at address $1700.

When assembling on cassette tape the ORG command will put the starting
address, specified by the expression, at the beginning of the object code
file. Then that object code file can be loaded with ZBUG’s load (L) command
or BASIC's CLOADM command without specifying the load address. The listing
generated by the assembler will have absolute addresses in the address
column. For example:

00100 ORG §1200
00110 LDA #5341
00120 LDX #5400
00130 ST1 STA X+
00140 CMPX #$440
00150 BLO ST1
00160 RTS

00170 END

This can be assembled on tape with the A NAME command; the AO option is
not necessary. Then go to BASIC by hitting the Q and ENTER keys, and ready
the cassette for reading the recorded file. The BASIC command: CLOADM will
load the program into memory, starting at address $1200. It can be executed
by using the command: EXEC &H1200.

m RMB - Form: SYMBOL RMB EXPRESSION

The RMB (reserve memory bytes) command reserves a number of memory
locations starting at the current address. The number of locations to
reserve is specified by the expression. If a symbol is provided it will be
defined. The RMB can be used to reserve an area of memory in the program
where a table might be stored and/or manipulated. For example:

00300 LDX #TABL
00310 RTS

00320 TABL RMB 22
00330 STA X
00340 END

In this example, 22 decimal locations between the RTS and STA machine
instructions will be reserved. The symbol TABL will be the starting address
of that area.

m SET - Form: SYMBOL SET EXPRESSION

The SET command is similar to EQU except that a symbol can be set to a
new value a number of times in one program. It also prints an S to the
right of that symbol in the symbol table listing. This setting and



resetting of the value only happens during the assembly process, not during
the execution of the object code. For example:

00100 CNT SET §1234

00110 TABL = EQU CNT.DIV.3
00120 CNT SET §$7200

00130 STA >CNT-$3000
00140 END

The symbol CNT is set to a value in statements 100 and 120. In statement
110, TABL is equated to $0611 ($1234 divided by decimal 3). In statement
130, the operand address is $4200 ($7200 minus $3000).

e SETDP - Form: SETDP EXPRESSION

The SETDP command informs the assembler that any instructions using
default extended addressing and whose most significant byte of the operand
address equals the expression are to be assembled using direct addressing.
However, it can not detect whether a symbol containing an address meets
these specifications. Before using the SETDP command the DP register must
be loaded with the appropriate value to get the expected results. Note also
that the effect of the SETDP command can be overridden by preceding the
operand with a greater than sign to force extended addressing. For
example:

00100 LDB #3%15

- 00110 TFR B,DP
00120 SETDP $15
00130 LDA $1566
00140 STX PAGE
00150 INC $2022
00160 STD >15FA
00170 PAGE EQU §15F2
00180 END

Statements 100 and 110 prepare to use the direct addressing mode by loading
the DP register with $15. Statement 130 will be assembled with direct
addressing. The rest will not.

Technical Details

To get the most from EDTASM+ you must know how it works. EDTASM+
always uses the memory area extending from address 0000 - 05FF for its
internal operations. Not every location is used, but be careful when
modifying any. Within this area is the text screen buffer, extending
from address $0400 - $05FF. In the screen buffer 512 decimal locations each
correspond to a unique print position on the screen. Locations $0400 -
$041F correspond to the 32 decimal print positions of the top-most line of



the screen. A character code in location $0400 will cause that character

to appear in the upper left corner of the screen. Locations $05E0 - $05FF
correspond to the 32 decimal print positions of the bottom-most line of the
screen. A character is displayed on the screen, if the video display

generater (VDG) is in the text mode, by putting its video display code

in a particular location of the screen buffer. The video display codes are
another set of codes. Each code comprises one byte and corresponds to one
printable character. Their only purpose is to display characters on the
screen. (The complete set of video display codes used by the Color Computer
can be found in Appendix C.)

EDTASM+ is in ROM occupying addresses $C000 - $DFFF. The starting
address is $C000, where the MPU is directed to begin executing instructions
when the Color Computer is turned on, if the EDTASM+ ROM pack is plugged
in. The MPU can also be directed to this address from BASIC, ZBUG, or an
assembled program.

Address Use
0000 Internal
Operations
0400 Screen
Buffer
0600 Internal
Operations
0800 Text
Buffer
J
Symbol
Table
Object
Code
Unused
8000 Extended Color
BASIC ROM
C000 EDTASM+
ROM
E000 Unused -
FF00 Dedicated
FFFF Addresses

Fig. 6-2 Memory map with EDTASM+.



When source code is entered and assembled in memory, EDTASM+ must use
more RAM to store this information. This working area normally starts at
$0600. The area from $0600 - $0800 is used for internal operations.

Normally the source code text is stored starting at address $0800 using
ASCII codes to represent each character.

The EDTASM-+ assembler is a two pass assembler: it scans or passes
through the source code twice. On the first pass all the symbols in-the
source code are identified, assigned a value, and put in a symbol table.

The symbol table is stored in memory immediately after the last source code
statement. The symbol table comprises items composed of a string of ASCII
characters corresponding to the symbol name followed by two bytes
containing the symbol’s value in straight binary. On the second pass the
assembler generates the object code, directed by the mnemonic, operand, and
any symbols in each statement. The object code is put in memory immediately
after the symbol table, if assembling in memory and not using the AO option
or ORG pseudo-command. Fig. 6-2 is a memory map depicting this memory
usage. However, the AO option and ORG pseudo-command can be used to put
the object code in any other part of memory except the areas used for the
source code and symbol table and the area used by EDTASM+.

The area EDTASM+ normally uses, starting at $0600, can be changed: for
instance, to make room for the high resolution graphic display mode which
uses addresses $0600 - $1DFF. This is done by changing the contents of
memory locations $00FF and $0100, also known as BEGTEMP, which specify
the starting address of the working area. Normally BEGTEMP contains $0600,
but other values can be put there. The two-byte value that can be entered
is restricted such that the least significant byte must be 00.

This procedure must be done before the source code is entered or loaded
in memory. The following operations are performed using ZBUG; you may want
to read the ZBUG section of this chapter first. To set BEGTEMP to $1E00,
enter the following commands.

B <ENTER> select byte display mode
W <ENTER> select word mode
FF/ 600 1E00 <ENTER> change_BEGTEMP

EDTASM+ must now be reinitialized with the ZBUG command: GC006. The
Go (G) command tells the MPU to start executing at the following address.
Starting EDTASM+ at $C006 will not affect the contents of BEGTEMP. At this
point the initial EDTASM+ display is on the screen and the source code can
be entered and assembled in memory or on tape.

The above example will result in EDTASM+ using the area $1E00 - $2000
for internal operations and the source code text in memory will start at
$2000 with the symbol table following it. If assemnbled into memory with the
A/IM/WE command the object code will be put in memory immediately
following the symbol table.



The assembler can also be set up to use USRORG. USRORG specifies the
starting address in which to store the object code. The MO assembler option
must be specified to use USRORG. USRORG is located at addresses 00FD and
OOFE and normally contains the highest address available in RAM.
Therefore, USRORG must be changed if the MO option is to be used.

The procedure is to use ZBUG to change USRORG and, if desired, BEGTEMP
to the desired addresses. Then EDTASM+ is reinitialized, after which the
source code can be entered and assembled using the MO and IM options.
BEGTEMP must be set to a value lower than USRORG. One must be careful to
allow enough room between BEGTEMP and USRORG for the working area, source
code, and symbol table. A minimun of $0300 bytes is recommended, but more
will be needed for larger programs. The number of bytes required for a
particular program can be found by first assembling it in memory without
any ORG statements and without the AO or MO options. Subtracting $0600 from
the starting address of the object code will tell you the number of bytes
required.

Suppose you wish to have the working area start at address $1E00 and
the object code assembled in memory starting at $3000. First ZBUG is
activated with the Z command, and the word display mode enabled with the W
command. USRORG and BEGTEMP can be modified as seen below:

FD/ XXXX 3000 <ENTER> change USRORG
FF/ 600 1E00 <ENTER> change BEGTEMP

Now EDTASMH+ is reinitialized with GC006. At this time the EDTASM+ initial
display is on the screen and the source code can be entered and assembled

in memory using the MO and IM options: A/IM/MO/WE. This places the object
code in memory starting at address $3000 and the working area starting at
address $1E00. This has all been done without using the AO option.

ZBUG DEBUGGING AIDS

ZBUG is the functional mode of EDTASM+ in which exist the debugging
aids. One goes to ZBUG from the editor by hitting the Z and ENTER keys. The
# prompt at the left edge of the screen indicates ZBUG is active. While in
ZBUG all numbers typed are assumed to be hexadecimal unless specified
otherwise. While in ZBUG, hitting E then ENTER will return you to the
editor mode.

During a program’s development and testing, one will spend a lot of
time in ZBUG. Its facilities include many commands that assist in debugging
a program. They can also be used to see how other programs work. The
commands have been grouped into four general categories; inspect and
change, program control, data movement, and calculations.

Inspect and change commands display and change the contents of specific
memory locations. The program control commands provide for executing and
controlling the execution of a program. Also included are commands that




display and change the values in the MPU’s registers. The data movement
commands let one move data from place to place in memory and use a printer,
tape, or the screen for viewing or saving areas of memory. The calculations
section performs arithmetic and logical operations.

Inspect And Change

Memory contents can be displayed in one of four different display
modes. After its content has been displayed one may change it to a
different value.

m Mnemonic Display - The default display mode is mnemonic (M); the
contents of a series of memory locations are displayed as an instruction’s
mnemonic and operand field. ZBUG assumes that the display address typed is
the starting address of an instruction and attempts to disassemble it and
display the results. If the address does not point to an instruction the
displayed results can be misleading. This display mode is activated by

typing the M then ENTER keys, but this only need be done if another display
mode had been previously specified. The contents of memory is displayed by
typing the address followed by a slash. For example, let’s display the

contents of BASIC ROM:

8000/ 1?7 < >

8001/ “ASLB < >

8002/ LDX #80DE < >
8005/ 'LDU #l12A < >
8008/ ~LDB #0A

Notice that depressing the down arrow key (scroll down) causes the next
instruction to be displayed. At address $8000 the contents do not match any
instruction op code, so ?? is displayed. Actually, the contents of 8000 and
8001 are not instructions: ZBUG is just doing the best it can to interpret
them as instructions. The display of addresses $8002 - $8008 are the actual
instructions in ROM. After each instruction is displayed, the cursor is
positioned to the right where one can enter a one-byte value that will be
stored at the starting address of ‘that-instruction.

The up arrow (scroll up) key causes the displayed address to be
decremented by one and displayed again. The same data is interpreted as
different instructions because the pointer is specifying a different, and
possibly nonvalid, instruction address.

If the displayed instruction is a branch or jump, hitting the right
arrow (->) key will cause the display pointer to follow the branch or take
on the value of the operand address and display its contents. This lets one
follow the flow of a program.



m Byte Display - The second display mode is the byte mode (B). It is
activated by typing B then ENTER. Now the contents of a memory location
will be displayed as a hexadecimal byte. Inspecting BASIC ROM again is done
as follows:

B <ENTER> (select byte display mode)
8000/ 45 < >

8001/ 358 < >

8002/ 8E < >

8003/ 80 < >

8004/ ODE

Here one sees the contents of the individual memory locations. At each
line, when the cursor is to the right, one can enter a one-byte value to
put in the displayed memory location. Depressing ENTER causes the entered
value to be stored at the displayed location. Depressing the down arrow key
instead of ENTER will store the new value in memory and display the
contents of the next location.

m Word Display - The third display mode is the word mode (W). It is
activated by typing the W then ENTER keys. A pair of memory locations will
be displayed on each line. For example:

W <ENTER> (select word mode)
8000/ 4558 < >

8002/ 8E80 < >

8004 ODECE

displays two bytes beginning with the specified display address. At each
line, when the cursor is to the right, one can enter a two-byte value
followed by the ENTER or key that will put the value into the two
displayed address.

m ASCII Display - The fourth display mode is the ASCII mode (A),
activated by typing the A then ENTER keys. This causes ZBUG to interpret
the contents of a location as an ASCII code and display the character it
represents. If the contents are not a valid ASCII code, nothing will be
displayed. For example:

A <ENTER> (select ASCII mode)
8000/ E < >

8001/ X < »

8002/

displays the contents of the ROM addresses as if their contents were ASCII
codes. As in the other display modes, one can change the contents of the




displayed memory location. The contents of a location can also be changed
to the ASCII code of a character by entering that character preceded with
an apostrophe. This is applicable to all four display modes. For example:

B <ENTER> (select byte mode)
2000/ =xx E <ENTER>

will store $45, the ASCII code of E, in location $2000.

® Numeric Base - One can direct displayed numbers to be displayed in
hexadecimal, decimal, or octal. Octal numbers use base eight. The
hexadecimal format is the default display format. This is done with the
output (O) command followed by a 16, 10 or 8 to specify hexadecimal,
decimal, or octal, respectively. For example: O10 <ENTER> results in all
numbers displayed in decimal. The displayed number’s base is indicated by a
suffix; T indicates decimal, Q indicates octal, and no suffix indicates
hexadecimal. Similarly, one can specify the base of all operator entered
numbers with the input (I) command followed by 16, 10, or 8. The default
base is 16. For example: I8 <ENTER> causes ZBUG to assume that any number
typed is octal. The input command. can be overridden by adding the suffix of
H, T, or Q to an entered number to specify that this number is hexadecimal,
decimal, or octal, respectively. For example: 150T/ displays the contents
of decimal address 150 regardless of the input mode.

If a program has just been assembled in memory, ZBUG can display data
using the values of symbols in the symbol table. For example, assemble the
following source code into memory.

00100 STR LDY #TABLE GET TABLE POINTER

00110 ST1 LDA Y GET CONTENTS

00120 BPL ST2 BRANCH IF NOT NEGATIVE
00130 NEGA FORM TWO’S COMPLEMENT
00140 STA )Y PUT BACK IN TABLE

00150 ST2 LEAY'1,Y INC TABLE POINTER

00160 CMPY #20+TABLE < END OF TABLE?

00170 BLO ST1 IF NOT, GET NEXT CONTENTS
00180 SWI RETURN TO ZBUG

00150 TABLE RMB 20 TABLE AREA

00200 END

After assembling the above, go to ZBUG. Now the object code can be
displayed using a symbol instead of an absolute address. Display examples
are:

STR/ LDY #TABLE

ST2/ LEAY LY




m Symbolic, Half Symbolic, and Numeric Submodes - When displaying object
code with its symbol table in memory, there are three submodes of the
mnemonic display mode. They are symbolic (S), half symbolic (H), and
numeric (N); symbolic is the default display submode. The display example
above is in the symbolic submode - the display addresses and operand
addresses are displayed as their symbols. The half symbolic submode is
selected by typing the H and ENTER keys. Subsequent display of the object
code will put the display addresses in symbolic form and the operand
addresses in numeric form. For example:

H <ENTER> (select half symbolic)
STR/ LDY #8B5 < >

STi/ LDA.)Y < >

STi1+2/ BPL 8AC

The numeric display submode is selected by typing the N and ENTER keys.
Subsequent display of the object code will put all numbers and addresses in
the numeric form. For example:

N <ENTER> (select numeric)
STR/ LDY #8B5 < >

8A5/ STA)Y < >

8A7/ BPL 8AC

Now the importance of labeling the first instruction of a program becomes
obvious; the symbol can be used to find the start of the object code. The
value of a symbol can be displayed by typing the symbol followed by an
equal sign:

STR= xxxx

where xxxx is its assigned numeric value (that will be displayed).

m Alternate Displays - Three special display subcommands are activated with
the semicolon, equals, and colon keys. The semicolon and equals keys are
used when displaying object code in symbolic format. Pressing the semicolon
key will cause that instruction to be displayed again in the numeric

display submode. Pressing the equals key will cause the first byte of the
displayed instruction to be displayed as a hexadecimal value. When
displaying in any mode, pressing the colon key will cause ZBUG to interpret
a byte’s contents as if they were the contents of the CC register, and

display one of the characters, EFHINZVC, for each corresponding bit that is
set. : : '



Program Control

The commands presented here are those one would use to test or .execute
a new program. During the following explanations the previous sample
program will be used. This program will read the contents of each location
in a table of 20 (decimal) bytes. If the value in a location is a negative
signed binary number, it is negated or its two’s complement is taken and
that is stored in TABLE. Upon completion, the SWI instruction returns
control to ZBUG. After this program is assembled into memory with no
errors, one can go into ZBUG to run it.

m Go Command - A program is executed from ZBUG with the Go (G)
command. Its formats are:

Gxxxx <ENTER> and GSYMBOL <ENTER>

The xxxx is the starting address the MPU will be directed to. If the symbol
table is in memory, the symbol of the instruction.to be executed can be
used. The sample program can be executed by entering GSTR. It will run very
quickly and the SWI instruction will return control to ZBUG resulting in
the display:

8 BREAK @ ST2+8

If desired, one can use ZBUG to inspect the locations in TABLE to see that
they all contain positive numbers.

m Single Step --One can make the MPU step through the program one
instruction at a time with the single instruction (,) command. Its

formats are:
XXXX, and SYMBOL,

The xxxx is an absolute address of an instruction. A symbol can be used if
the symbol table is in memory. This will cause that one instruction to be
displayed and executed. Subsequent instructions can be executed by
repeatedly hitting the coma key. During this process one can view the
sequence of instructions of a particular program. However, this feature
does not work with instructions in ROM.

m Register Display - At any time the execution of a test program is stopped
and ZBUG is in control, the contents of all or any of the MC6809E internal
registers can be displayed and/or altered. This is done with the display
register (/) command prefixed with an R for all registers or a valid

register abbreviation of one register. For example:

R/ (display all MPU registers)
DP/ xx (display contents of DP register)



When a register’s contents are displayed one can enter a new value to be
put in, just like changing the contents of memory. However, when all the
registers are displayed, none of their contents can be changed. The ability
to view the contents of the registers is very useful when debugging a
program.

® Breakpoints - A breakpoint is a point in a program where one would like
execution to stop so that interim results can be checked. However, a
breakpoint can not be set for an instruction in ROM. A breakpoint is set or
enabled with the X command. The X is entered with the address or symbol of
the stopping point after it. Its formats are:

XXXXX and  XSYMBOL

A specific example is: XST1, which will set a breakpoint at the LDA ,Y
instruction. Each time that instruction is encountered, the program will
stop. One can then display memory or registers to see how the program is
working. A maximun of eight breakpoints can be entered. They are numbered
0 - 7 in the order in which they were entered. An SWI instruction will
cause a return to ZBUG at breakpoint number eight. When a breakpoint is
encountered, ZBUG displays the breakpoint number and its address or symbol
as:

0 BREAK @ STI

After a breakpoint, the program can be single-stepped through the following
instructions by hitting the coma key. Breakpoints that have been set can be
listed with the display breakpoint (D) command. Typing the D then ENTER
keys will display all the breakpoints.

Execution of a program stopped at a breakpoint can-be resumed with the
continue (C) command. Entering C will resume the program until a
breakpoint is encountered again. Entering a Cxx such as: C5 will cause the
program to continue executing up to the fifth (decimal) detection of a
breakpoint, then stop.

Data Movement

Six ZBUG commands move data or object code within, to, or from memory.
These commands work with blocks of memory. After typing a command,
depress the ENTER key to perform it.

m Move - Format: U XXXX YYYY NNNN

The move command copies the contents of a series of memory locations to
another series of locations. The starting address of the area to be copied
is specified by the XXXX field. The starting address of the destination
area is specified by the YYYY field. NNNN specifies how many bytes to copy.
The numbers entered in the fields are hexadecimal unless specified



otherwise. If you are copying a program whose symbol table is in memory, a
symbol can be used as an address. For example: U STR 3100 35 will copy $35
bytes of the sample program to an area of memory starting at address $3100.
The program now resides in two places in memory.

e Put - Format: P nnn... XXXX YYYY ZZZ7Z

This command saves the contents of an area of memory on cassette tape.
What is saved may be object code or data. The file name, up to eight
characters, is specified by the nnn... field. The XXXX field specifies the
starting address and YYYY the ending address of the area to be put on tape.
The ZZZZ field specifies the address of the first instruction to be
executed after this tape file is loaded in memory. The XXXX, ZZZZ, and name
fields are put in the file and used when loading it back in memory. If the
symbol table is in memory a symbol can be used to specify an address.
Examples of using the put command are:

P TESTA STR TABLE+20 STR
P TESTB 0123 423 2A2

An object code file can be loaded into address XXXX with BASIC’s
CLOADM or ZBUG’s load command without specifying that address at load
time. In BASIC the program can be run without specifying the start address.
For example: CLOADM and EXEC will load and execute a properly
recorded object code file made with the put command.

® Verify - Format: Vnnn...

The verify command reads over an object code file generated with the
put command or assembled onto tape to see that it was recorded without
errors. When a name (up to eight characters) is provided in the ann...
field, it searches for that object code file, then verifies it. If the name
is omitted, it will verify the next object code file on tape. This command
can be used to ensure that a recording is good.

m Load - Format: Lnnn...

The load command reads an object code file created with the put command
or assembled onto tape. When a file name is provided, it searches for that
file and loads it. If the name is omitted, the next file on tape is loaded.
The object code or data will be loaded into memory at the starting address
specified in the file. When loading a file created with the put command,
the data will be loaded into memory at the starting address specified by
the put command’s XXXX field. When loading a file created by assembling on
tape, the object code will be loaded in memory starting at address 0000
unless an ORG command was used. In that case the load address will be that
specified by the ORG command.



® Display - Format: T XXXX YYYY

The display command lists the contents of the range of memory addresses
XXXX - YYYY on the screen. The contents are displayed in the format
previously selected (word, byte, mnemonic, or ASCII). For example: T 800
850 displays the contents of addresses 800 - 850. The address can be
hexadecimal, decimal, or octal. If a symbol table is in memory, a symbol
can be used to specify an address.

® Print - Format: TH XXXX YYYY

The print command lists the contents of the range of memory addresses
XXXX - YYYY to a printer. The contents are displayed in the format
previously selected (word, byte, mnemonic, or ASCII). For example: T 800
850 prints the contents of addresses 800 - 850. The address can be
hexadecimal, decimal, or octal. If a symbol table is in memory, a symbol
can be used to specify an address.

Calculations

ZBUG is capable of calculating the value of an expression composed of
numbers, characters, parentheses, and operators. If there is a symbol table
in memory, symbols may also be in an expression. The operators can be
classified in three categories; arithmetic, logic, and relational. The
arithmetic and logic operators and their actions are listed in Table 6-2.
The relational operators are shown in Table 6-3.

Arithmetic Logic :
Operator| Action Operator Action
+ Addition AND. And
- Subtraction .OR. Inclusive Or
* Multiplication .XOR. Exclusive Or
.DIV. |Division .NOT. Complement
.MOD. |Modulus < Shift

Table 6-2 Arithmetic and Logic Operators.

Qperator Action
.EQU. Test for Equality
NEQ. Test for Inequality

Table 6-3 Relational Operators.

Values to be operated on are internally represented by two bytes of
straight binary numbers. The results of any expression are also represented
in two bytes. Thus, only integers are allowed. This allows values 0 - $FFFF



which correspond to the maximum memory address range of the MC6809E. The
two-byte size also exactly matches the number of bytes in which a symbol’s
value is represented. This allows expressions to be used in program
statements where the calculated value will be assigned to a symbol or
operand field.

From ZBUG the calculated value of an expression can be displayed by
pressing the equal (=) key. For example:

2A+4]1= 6B

The base of numbers entered and displayed is controlled by the input and
output commands. Base 16 is the default base for input and output. The base
of inputted numbers can be set to ten as seen below.

110 <ENTER>
98-35= 3F

Decimal 35 is subtracted from decimal 98 resulting in $3F. The input
command can be overridden by adding a suffix to a number to specify its
base. An H suffix indicates hexadecimal, T indicates decimal and Q
indicates octal. For example:

98T-35H= 2D

demonstrates an expression with numbers of different bases.
If a calculation generates a number outside the range of 0 - $FFFF, the
overflow bits are dropped and there is no indication of this condition. For

example:
FF01+123= 24

If a result is negative, ZBUG attempts to represent it in two bytes. For

example:
4-7= OFFFD

However, any function that uses this value will interpret it as a positive
number ($FFFD). This phenomenum is a type of wrap-around of the values
represented in a limited number of bits.

The arithmetic operators are shown using hexadecimal input and output
numbers. Addition, subtraction, and multiplication are straightforward.
Just be sure the result will fit in two bytes of straight binary. Examples
are:

A23+112= 0B35
E78-432= 0A46
3*%104= 30C
1B*4A= 7CE




Leading zeros are not displayed. Numbers beginning with the hexadecimal
digits of A - F are prefixed with a 0 to indicate it is a number and not a
symbol or register.
Division is done normally, except, that remainders are discarded and
not displayed: '
F.DIV.5= 3 (§F divided by $5)
14A.DIV.2C= 7 ($14A divided by $2C)

The modulus is the remainder resulting from dividing the number before
(.MOD.) by the number after (MOD.):

F.MOD.5=0
1E54.MOD.C5= 51

Logic operators are demonstrated using hexadecimal numbers. All entered
numbers are represented in two bytes, even if they fit in one byte:

1234, AND.OF0F= 204

1234, OR.0F0F= 1F3F

1234 XOR.0FO0F= 1D3B

.NOT.1234= EDCB

1234<2= 48C (shift left two bit positions)
1234<-1= 91 (shift right one bit position)

The relational operators indicate whether an expression is true. If
true, the resulting double byte is set to SFFFF. If false, the resulting
double byte is set to 0000:

17.EQU.17= OFFFF
23.EQU.123= 0
8A.NEQ.8A= 0

8A.NEQ.10A= OFFFF

More than one operator can be in an expression. For example:

4*10A+7= 42F
1C23.DIV.0C.EQU.211= 0

When two or more operators are in an expression they are performed in a
specific order. That order, from first to last is: *, .DIV., .MOD. <,

AND., .OR., .XOR., +, -, .EQU., .NEQ. The order in which the operations
are performed can be changed by using parentheses. The operator enclosed in
the largest number of parentheses will be performed first. For example:

((TE+1C).OR.2525)<3= 2DF8  (add first, shift last)



Characters can also be in expressions where their ASCII code is the
numeric value used to calculate the resulting value. The ASCII code is
specified by preceding a character with an apostrophe. For example: 'B =
prints the ASCII code for B, $42. The following expression:

'B+25= 67

adds $25 to the ASCII code for B.

With ZBUG, one can use the Color Computer as a calculator to perform
such tasks as converting numbers to different bases, or to perform
arithmetic with hexadecimal, decimal, or octal numbers.



CHAPTER 7

Assembly Language Programming

This chapter describes assembly language programming techniques,
conventions, and guidelines. Each assembly instruction is primitive, does
little, and is unlike English, so guidelines have evolved to assist the
programmer in writing a program, and to make reading source code listings
easier and more informative.

Larger programs are usually written in sections; each section performs
some specific task or group of tasks. After all sections are assembled and
debugged, they are combined to form a complete program. The sections are
categorized as the main, or core, program; subroutines; and interrupt
handlers. Each section can also be made up of subsections. All sections
should have comment lines describing what each does.

Many examples are provided to illustrate the important concepts and
principles. You may find they are quite useful, and incorporate them into
your library of programs.

SOURCE CODE GUIDELINES

The source code specifies instructions and data, and also contains
English comments describing the program. A well documented program can
save a lot of time and frustration when debugging it or changing it later.
Listing 7-1 is an example of a well documented program listing.

This program first clears the screen. In statement 180 the first
address ($400) of the screen buffer is loaded into the X register. Then the
video code for a space ($60) is loaded into the A register. The space code
is put in each location of the screen buffer in program loop statements
200 - 220. Now preparation can be made to put the text line on the screen.
The starting address ($4C0) of the eighth display line is loaded into the X
register at line 230 and the starting address of the text (#CLTEXT) is




loaded into the Y register at line 240. The loop in lines 250 - 320
performs a number of functions. The ASCII code for each text character is
read from the data area at line 250. If the end of text code (304) is
detected at lines 260 and 270, the branch to line 330 is taken, ending the
program. If not, it is determined at lines 280 and 290 whether the ASCII
code is also a video display code for an uppercase character. This needs to
be done because the ASCII code of a character is not necessarily its video
code. This can be seen in Appendix D. If the code is greater than $40, it
is a valid uppercase video text code and is put in the screen buffer at
line 310. If it is not valid, it is converted to one at line 300, by adding
$40 to it and then placing it in the screen buffer at line 310. Line 320
branches to the beginning of this loop to act on the next character.

00100 Fddkdkdkokkkkkkkikkhkkkkkkkkkhhkkkkikkhhhhhkdkhkhks

00110 *PROGRAM NAME: CLRPRN

00120 *BY SAM FASTCODE AUG 2,1985

00130 *THIS PROGRAM WILL CLEAR THE SCREEN AND DISPLAY
00140 *AN UPPER CASE TEXT LINE. IT IS TO BE EXECUTED FROM

00150 *BASIC TO WHICH IT WILL RETURN UPON COMPLETION.
00160 Fkkkiddodkdddededdok sk ddodde ok kdokdooion kool ook

00170 ORG $2A00 LOADING ADDRESS
00180 CLRPRN LDX #3400 GET SCREEN POINTER
00190 LDA #$60 GET SPACE CODE
00200 CL1 STA X+ PUT -CODE ON 'SCREEN
00210 CMPX #35FF END OF SCREEN?
00220 BLS CL1 IF NOT, DO AGAIN
00230 LDX #$4C0 GET DISPLAY POINTER
00240 LDY #CLTEXT GET "TEXT POINTER
00250 cL2 LDA ,Y+ GET TEXT CODE
00260 CMPA #$04 END OF TEXT?

00270 BEQ CL4 1F SO, GO TO END
00280 CMPA #%40 GOOD :VIDEO CODE?
00290 BHS..CL3 1F. SO, USE IT
00300 ADDA #3$40 CHANGE TO VID CODE
00310 CL3 STA X+ PUT 'ON ‘SCREEN
00320 BRA CL2 DO -AGAIN

00330 CL4 RTS RETURN TO BASIC

00340 *hkdddkiddkddidiokiokkkddioionkdokioikdokiokiookkok koo
00350 CLTEXT FCC /TESTING LINE 0123456789 1"#$/

00360 FCB $04 END OF TEXT CODE
00370 *ikkkrhkkkikskiikkdhkiihhkkhiohikkiook ik
00380 END $2A00 START EXECUTION ADDR

Listing 7-1 The CLRPRN program.

The comments in this program help immensely in understanding the
program and don’t cost anything in memory use or MPU time after the source
code is assembled. The object code is exactly the same whether or not there
are any comments; the assembler completely ignores comments.

There is more to documenting a source code than just commenting each
statement. Lines 110 - 150 are the descriptive header, bracketed by lines
100 and 160 to set it off from the instruction statements. Line 110 gives



the program name, CLRPRN (clear and print). The name is limited to six
characters because it will be used as the name or label of the first
instruction in the program. The name also specifies the starting address.

The source code and object code will be saved on tape. The file name
should be the same as the program name with an indicater to tell whether
that file is the source code or object code. Since the program name is
limited to six characters and a file name may contain up to eight
characters, two characters are available to use as an indicator. One
technique adds an O or S suffix to the program name; the O indicates an
object code file and the S a source code file. For example, the source code
could be saved with the following command: W CLRPRNS. The object code would
then be put on tape with the command: A CLRPRNO. There is still a character
position open. It could be used to indicate the version of that program,
since a program often goes through many revisions before it finally works
as desired. Ten versions can be noted, zero through nine. The source and
object code files would be saved with the following EDTASM+ commands: W
CLRPRNS3 and A CLRPRNO3. It is best to use one tape for source code files
and another for object code files.

Line 120 gives the author and completion date of the program which
should be included if the program is of any value. It protects of your work
and it is necessary if the program is to be copyrighted. Lines 130 - 150
describe the operation of the program, very handy at a later date when you
have forgotten what the program does.

Lines 170 and 380 specify the load address and the address of the
initial instruction of the program. They do not have to be the same value.
Since this program is to be used from BASIC, line 170 tells the CLOADM
command where to load it and line 380 tells the EXEC command where to start
executing. This makes using the program much easier. After the object code
is assembled onto tape, it can be easily loaded and executed with the
following BASIC commands:

CLOADM "CLRPRNO"
EXEC

Lines 170 through 380 are all commented. You may not feel this is
needed with shorter programs, but they may be combined together to yield a
large program, and then you will be grateful for the comments.

The data area, lines 350 and 360, is separated from the rest of the
program by lines of asterisks to make it easy to find. This also helps you
avoid putting a data area within a sequence of instructions, causing the
MPU to execute the data as if they were instructions.

The symbols used in this program are derived by a technique to keep one
from defining a symbol twice. The multiply-defined symbol problem is most
likely to arise in large programs composed of many sections. One may
mistakenly define a symbol in one section and then again in another



section. When the sections are assembled the assembler detects the error,
which must then be corrected. The technique used here requires that each
small program or program section be given a unique name, and the first two
characters of each name must be different from the first two characters of
any other name. All the symbols defined within a section are composed of
the same two first letters plus up to four more characters. Thus, the

sample program CLRPRN would define the symbols CLRPRN, CL1, CL2, CL3,
CL4, and CLTEXT. The only labels that can be the same in a group of
subprograms are those in the operand fields; the different sections may use
or reference any data area created by any other section. Remember, the
potential problem is defining a symbol twice, not using it twice.

Segmented Programs

A program can be built in segments that are assembled and tested
separately before put together. Smaller sections are much easier to debug
than a large program.

A sample program (PHEX) follows; its tasks are to clear the screen and
display the hexadecimal digits contained in a byte in memory. The program
is to be executed from ZBUG and on completion will return to ZBUG. The
program is divided into sections with clearly defined tasks. The first
section’s task is to clear the screen. Its source code would look like
Listing 7-2.

100 *CLEAR THE SCREEN

10 FhRrRRR R RRRRER IR R TRk Rk
120 PHEX  LDX #8400 START OF DISPL BUFFER
130 LDA #$60 SPACE CODE

140 PHCL  STA ,X+ PUT IN DISPL BUFFER

150 CMPX #S5FF END OF BUFFER?

160 BLS PHCL IF NOT,DO AGAIN

170 SWI RETURN TO ZBUG

I R bbb it bt ottty
190 END

Listing 7-2 Clearing the screen.

The first instruction is labeled PHEX, the name (print hex) of the
total program. The section should be assembled and tested to be sure it
works properly, then the source code stored on tape for later use.

The next section inspects each hexadecimal digit (nibble) of a byte and
generates its video display code. The video codes are stored in memory for
the next section to use. First, the most significant nibble of a byte is
inspected, its video code generated, and put in memory. Then the least
significant nibble is similarly dealt with. A flowchart depicting this
procedure can be seen in Fig. 7-1. The only valid video codes are those for
hexadecimal digits 0 - 9 and A - F, found in Appendix D. This task would be
coded, tested and debugged, and its source code saved on cassette tape.

The source code for each section should use different line numbers so



they won’t overlap those of another section. For example, the first
section uses lines 100 - 190. The second section should start with line
200.

Get MS nibble

Calc video Calc video
code (0-9) code (A-F)

Store code
in memory

Get byte
Get LS nibble

Calc video Calc video
code (0-9) code (A-F)

Store code
in memory

Fig. 7-1 Generating Video Codes of Hexadecimal Digits.

The source code for each section should use different line numbers so
they won’t overlap those of another section. For example, the first section
uses lines 100 - 190. The second section should start with line 200.

The third section moves the video display codes, generated by the
previous section, into the display buffer. In this case they are displayed



on the fifth line, toward the right side of the screen.

100 FhkkREEEKKRKK IR KRR *Thhkhhkhhhhkrdhdhkkhhkhhhkhd

110 *PROGRAM NAME: PHEX

120 *BY AUTHOR - DATE

130 *THIS PROGRAM IS TG BE EXECUTED FROM ZBUG TO
140 *WHICH IT WILL RETURN UPON COMPLETION. IT WILL
150 *CLEAR THE SCREEN, GENERATE THE VIDEO CODES OF
160 *THE HEX DIGITS IN A BYTE, AND DISPLAY THEM.
170 Fhkkkdkdokddokkkkdkioriokkkdkkdioh g kkkddokkk ok koo

180 ORG $2000 LOAD ADDR
190 Fkkrkdohiidokidk ok koo ik ok koo dolek ko ek

200 *CLEAR THE SCREEN )
D10 FhkkFdmkd kR k Rk Rk kbR kR Rk koo ko

220 PHEX LDX #3400 START OF DISPL BUFFER
230 LDA #3560 SPACE CODE

240 PHCL STA X+ PUT IN DISPL BUFFER
250 CMPX #$5FF END OF BUFFER?

260 BLS PHCL IF NOT,DO AGAIN

270 B L R R R T e T S e S T s e

280 *GENERATE THE VIDEO CODES OF THE HEX DIGITS
290 *IN A BYTE AT PHBYTE AND STORE THEM AT PHBYDS

300 KkhhkkhkkhkkRkkkRhkrhhkhhkkhhhkkhkrhdkhkkhhhihik

310 LDX #PHBYDS STORAGE ADDR

320 LDB PHBYTE GET BYTE

330 LDA #3$10 MULTIPLIER VALUE
340 MUL SHIFT MS NIBBLE INTO A
350 CMPA #$09 GREATER THAN 9?

360 BHI PHCVA IF-SO,CONV TO ALPHA
370 ORA #$70 CONV TO NUM CODE
380 BRA PHCVB GO STORE IT

390 PHCVA  ADDA #$37 CONV TO ALPHA CODE
400 PHCVB  STA X+ STORE CODE

410 LDA PHBYTE GET BYTE

420 ANDA #30F -GET-LS NIBBLE

430 CMPA #3509 GREATER THAN 9?

440 BHI PHCVC IF SO,CONV ALPHA
450 ORA #3$70 CONV TO NUM CODE
460 BRA PHCVD GO STORE IT

470 PHCVC  ADDA #8$37 CONV TO ALPHA CODE
480 PHCVD ' STA X+ STORE CODE

40 Fhkdk ko dkk ek kR kR ok dkok
500 *PUT TWO VIDEQ CODES AT-PHBYDS INTO DISP BUFF

510 FkkkkkkkkrRhhhhdkhhkkhhihkkhkrhkikihhhkhkkhkkhki

520 LDD PHBYDS GET VIDEO CODES

530 STD $498 PUT INTO BUFFER

540 SWI RETURN TO ZBUG

5EQ kkkkkkdk kR kR kR kR Rk Rk Ak ek
560 PHBYTE FCB $7C TEST BYTE

570 PHBYDS RMB 2 STORAGE AREA

580 END $2000 EXEC ADDR

Listing 7-3 The PHEX Program.

After each section is written and debugged, their source codes can be
merged together to form the total program. The three source code files can
be successively loaded by the editor’s load (L) command. If the source code



statement numbers of each file do not overlap, the files will be appended
to each other in the editor’s text buffer. For example, the first section

used lines 100 - 190, the second 200 - 500, and the third 600 - 700. Now
the SWI and END statements must be removed from all but the last section.
Any source code data areas of any section are then moved to follow the last
section. A descriptive header can be added and the renumber (N) command
used to organize the line numbers. The final result would look like Listing
7-3.

The total program should then be assembled and tested. The final
working source code and object code can be saved on tape. The program is
loaded from ZBUG with the load (L) command. It is executed by the G2000
command. The contents of PHBYTE, $7C, will be displayed on the right side
of the screen. You can use ZBUG to put a different value in PHBYTE and then
run the program again to see that it displays the new value. However, be
careful to modify just that location so other data or instructions are not
changed.

SUBROUTINES

Many times tasks must be done a number of times. To conserve memory,
those program sections should exist only once. The main program will
execute it whenever that task needs to be done, and upon completion of that
section the main program will resume execution. This type of a program
section is a subroutine. Its relationship with the main, or calling,
program can be seen in Fig. 7-2.

Main Program

start
————— Subroutine
————— start
----- e
JSR - - -
————— return -- ==
————— RTS end
end | -----

Fig. 7-2 Concept: Main Program and Subroutine.

The MPU is directed to a subroutine by a JSR or BSR instruction. This
is known as calling a subroutine. The JSR or BSR cause the contents of
the PC register to be pushed onto the S stack (saved), and execution starts



at the operand address, the starting address of the subroutine. A complete
description of these instructions is in Chapter 5. When the subroutine is
complete, it executes its last instruction: RTS. RTS pulls the contents of
the PC register from the S stack, causing the MPU to resume execution at
the instruction immediately following the JSR or BSR in the main program.

Subroutines significantly reduce the work that goes into designing a
main program. The main program can be viewed as a general controller
delegating detailed tasks to subroutines. This lets the programmer
concentrate more on the total job to be done when designing the main
program. This technique also uses less memory, since each subroutine exists
only once in memory and not many times. However, the use of subroutines
slows down the exectution speed of a program slightly because of the extra
work involved in pushing and pulling registers to and from a stack. You
must balance a group of conflicting requirements; memory use, execution
speed, and programming ease. In the real world, the most important item is
whether the final program works well, and programming ease certainly helps
attain this. .

Main Program Responsibilities

Before a subroutine is called the main program must establish the S
stack. The S stack is an unused area of memory in which to store data. To
use it as the S stack, the S register must be loaded with the highest
address of that area plus one. Data can now be pushed into the stack and
later pulled out. The S stack can be established at a memory address higher
than the program, seen in Fig. 7-3.

Program

_____ >_ instructions

stack area

xxxx addr to put in S reg

Fig. 7-3 Establishing the S Stack.




A byte is pushed onto the stack by first decrementing the contents of
the S register by one and then storing the byte in the memory address
specified by the S register. This process is automatically performed by the
JSR, BSR, and PSHS instructions. Look at Fig. 7-3: as more bytes are pushed
onto the stack, the S register is decremented further and the bytes are
stored in memory locations closer and closer to the program. The correct
size of the reserved area must be calculated. If the area is too small, the
stack will eventually grow into the program instruction area and destroy
the program. The required size of the stack is determined by three
characteristics of the total program.

One characteristic is how many registers will be stored in the stack
when a subroutine is called. The minimum is one register, the PC register,
which requires two bytes. However, the subroutine also stores the contents
of registers before it uses them. This is so the registers can be restored
to their original state before returning to the main program. The number of
registers that could be stored by a subroutine vary from none to all except
PC and S. Therefore, the stack must be from two bytes long (just PC stored)
to 12 bytes long (all possible registers stored) before calling a
subroutine.

Another characteristic that determines the size of the stack is the
maximum number of levels of subroutines there are in the program. The
number of levels is the number of subroutines called before returning to
the main program. This number increases as one subroutine calls another
subroutine. Fig. 7-4 depicts a program with two levels of subroutines.

Level 1 Level 2

! SUBA |

! [
Main Program ! - - - - l

| - - - -
----- - = I SUBC
----- JSR SUBC
JSR SUBA : ST
_____ - 1 -
_____ fl\_ RTS I T
_____ I - o -
JSR SUBB|_ |, : RTS
_____ \ SUBB |
. !
----- ! --—- !

Fig. 7-4 Multiple Levels of Subroutines.




In Fig. 7-4, the main program would have to establish a stack big
enough to also hold the registers saved when SUBA is called and when SUBA
calls SUBC. A subroutine such as SUBC called by another subroutine is said
to be nested. This method, where the main program establishes one stack
for all the subroutines to use, results in the fastest program execution,
but requires more planning by the programmer. Alternatively, SUBA could
assume all the responsibilities of a program calling a subroutine and
establish its own S stack to be used when calling SUBC. This makes planning
the stack sizes easier, since each section would only be concerned with
subroutines it calls directly. However, this requires more instructions in
SUBA and reduces execution speed. This is another example of trading
programming ease for execution speed.

The final characteristic that affects the size of the S stack is
whether the main program or any subroutines will use it for other purposes,
such as temporary storage data or for data manipulation. The number of
bytes required for these other purposes will have to be added to the number
determined by the preceding considerations to arrive at the total S stack
size.

Another responsibility of a main program or any program calling a
subroutine is passing the argument, or data, to the called subroutine and
receiving the results. Some subroutines do not require an argument, such as
a subroutine that clears the screen. The calling program simply calls it;
when that subroutine clears the screen it returns to the calling program
with no data to give it. The source code of a sample subroutine to clear
the screen is in Listing 7-4.

1000 *SUBROUTINE NAME: CSCREN

1010 *BY AUTHOR - DATE

1020 *THIS SUBROUTINE WILL CLEAR THE TEXT

1030 *SCREEN. IT USES &4 BYTES OF THE S STACK.
1040 Fdkwddohkionikkooksokkok ok ok ok ook

1050 CSCREN PSHS A,X,CC SAVE A,X,CC REGS

1060 LDX #$400 START OF DISPL BUF
1070 LDA #3$60 CODE OF SPACE

1080 cs1 STA X+ PUT IN BUFFER

1090 CMPX #$5FF END OF BUFFER?
1100 BLS CS1 IF NOT,DO AGAIN
1110 PULS ‘A, X,CC RESTORE REGS

1120 RTS RETURN

1 130 Kk khkkdkdkkdkkkkidkkkhkhkhkhkkkhkhhkrkhkhkkhir

Listing 7-4 THE CSCREN Subroutine.

Line 1030 provides an important piece of information: how many stack
bytes the subroutine will use. This amount is in addition to the two bytes
used to store the PC register. The source code of this subroutine, and
others, is started at high line numbers to allow the main program’s source
code to be put in low numbered lines starting at 100. Line 1050 stores the

+ /7



A, X, and CC registers in the stack because this subroutine uses them. At
line 1110, the A, X, and CC registers are pulled from the stack, restoring
them to their original contents. This lets the main program continue with
all its registers unmodified.

1200 *SUBROUTINE NAME: VIDEQ

1210 *BY AUTHOR - DATE

1220 *THIS WILL CALCULATE THE VIDEO DISPLAY CODE
1230 *OF A CHARACTER WHOSE ASCII CODE IS IN A. THE
1240 *CHARACTER SET 1S UPPER CASE ALPHANUMERIC AND
1250 *SYMBOLS. THE VIDEO CODE WILL BE RETURNED IN A.
1260 *THIS SUBROUTINE USES 1 BYTE OF THE S STACK.

1270 KRARRRRRRRARRRKRhdhhhkhhkhkhkkhhkhkdkhkkikkhkhkihdhhkid

1280 VIDEO  PSHS CC SAVE REGS

1290 CMPA #$40 CHAR TYPE?

1300 BHS VIS IF NO CNV, GOTO
1310 ADDA #3$40 CNV TO VIDED
1320 VIS PULS CC RESTORE REGS
1330 RTS RETURN

1340 Fedkdeddeddedodedede ok ke ko de ek ok ok ok R ook o e e ok ok ke e ok o ok e ok e e e e

Listing 7-5 The VIDEO Subroutine.

If one or two bytes of data is to be passed to a subroutine, the data
is normally put in a specific register by the calling program. When the
subroutine is called, it performs its task upon the data in the
predesignated register. The result of the subroutine is returned to the
calling program in a predesignated register. Listing 7-5 is an example of a
subroutine that receives one byte in the A register, manipulates that byte,
and returns the result via the same register. ‘

Main Program Descriptive
Table Subroutine

----- 1800 [ 1900
----- 38
----- 2000

X reg=1800

JSR --——
————— 1900 RTS
————— Data
————— Table
2000
Stack Result
Area Area

Fig. 7-5 Passing Data to a Subroutine with a Table.




When large amounts of data are to be acted on by a subroutine, it is
best to transfer an address to the subroutine. The main or calling program
should organize the data in memory as a table or list. Then a table
describing that list should be built. The descriptive table should contain
the starting address of the data list, the number of elements in the data
list, and the destination address (where the subroutine should deposit the
results). Then the calling program transfers the address of the descriptive
table to the subroutine via a register. This concept is illustrated in Fig.

7-5.

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

*SUBROUTINE NAME: HXVAL

*BY AUTHOR - DATE

*THIS SUBROUTINE WILL CONVERT A STRING OF

*ASCII CODES OF HEX DIGITS TO THEIR HEX VALUE.

*IT WILL RECEIVE THE ADDR OF THE DESCRIPTIVE
*TABLE IN Y. IN THAT TABLE,THE FIRST 2 BYTES ARE
*THE ADDR OF THE NUMERIC TEXT STRING, THE 3RD
*BYTE CONTAINS THE NO OF CHARACTERS, AND THE 4TH
*AND 5TH CONTAIN THE ADDR AT WHICH TO STORE THE
*RESULTING HEX VALUE. IT USES 7 BYTES OF THE STACK.

hkkkkkdhhkkhkkhhkikhhikhikdhkhkkhikihhkhkkikdkhkikk

HXVAL  PSHS A,B,X,Y,CC SAVE REGS
LDX ,Y++ GET ADDR OF DATA
LDB ,Y+ GET CNT OF DATA
STB HXCNT STORE COUNT
LDY -, Y++ GET DUTPUT ADDR
CLR ,Y CLR OUTPUT AREA
BITB #$01 IS CNT ODD?
BEQ HXA IF "NOT, ‘'SET EVEN
LDB #301 SET ODD SWITCH
BRA HXB CONTINUE
HXA CLRB SET EVEN
HXB LDA ,X+ GET CHAR CODE
CMPA #339 GREATER THAN 97
BHI HXC IF SO,ALPHA CONV
SUBA #$30 CNV TO HEX DIGIT
BRA HXD CONTINUE
HXC SUBA #337 CNV TO ‘HEX DIGIT
HXD CMPB #300 EVEN OR ODD?
BEQ HXE EVEN
ORA ,Y MERGE HEX DIGITS
STA ,Y+ STORE THEM
CLRB SET EVEN
BRA HXF CONTINUE
HXE LDB #3510 MULTIPLIER
MUL SHIFT INTO UPPER NIBBLE
STB ,Y STORE 1T
LDB #301 SET ODD
HXF DEC HXCNT DECR CNT
BNE HXB IF NOT 0,DO0 AGAIN
PULS A,B,X,Y,CC RESTCRE REGS
RTS RETURN
KEKAKRKEKAKARRARREARAARRR AR khhhkhkhkkhrhhkhhrhhhhkihkikk

HXCNT - ‘RMB 1 CNT OF BYTES
Fedededodkkkkdk kR ko ko dok ok ke kkddek ok ko dok ke ko ke ok

Listing 7-6 The HEXVAL Subroutine.



The address, $1800, of the descriptive table in Fig. 7-5 is passed to
the subroutine in the X register. The subroutine works on the 38 elements
of data in the table at address $1900 and puts the results in memory
starting at address $2000. The calling program, through the descriptive
table, completely controls the subroutine. The calling program is the
master and the subroutine is the slave. An example of a subroutine
controlled with a descriptive table can be seen in Listing 7-6.

The subroutine performs a task similar to that of BASIC’s VAL command.
It generates the positive binary value of a string of text hexadecimal
digits. For example, the hexadecimal value of $0AS5C is generated given the
text string "A5C" in ASCII code. The resulting value is right justified.
That is the result is $0AS5C and not $A5CO, two very different answers.

To use the HXVAL subroutine, the main or calling program builds a table
in memory to control the subroutine, If a text string is in memory at
address $1800 such as:

1800 -°31.32 46 38 (text = 12F8)

then a table would be constructed at address $1700, for example:

1700 - 18 00 (addr of text string)
1702 04 (no. of characters)
1703 21 20 (output addr)

Just before the subroutine is called, the X register is loaded with the
address ($1700) of the above table:

LDX #3$1700
JSR HXVAL

LDX loads the table address and JSR calls the HXVAL subroutine. After the
subroutine completes, the main program execution resumes with the
instruction immediately after the JSR. The subroutine HXVAL would have
generated and stored the hexadecimal value in memory as:

2120 12 F8

where the main program can use it or direct another subroutine to use it.
Another way to transfer many bytes to a subroutine is in a stack,

preferably the U stack. In this technique the U stack is established and
data put in it by the main or calling program. A descriptive table is built
indicating the number of items in the stack and where to put the results.
The address of the descriptive table is passed to the subroutine in the X
or Y register and the U register points to the top of the U stack. Use the
U stack instead of the S stack because the S stack is used to store



registers. The S stack can be used to pass data, but be very careful about
keeping track of where the data and registers are in it.
In summary, the main or calling program has the following
responsibilities when using subroutines:
1) establish an S stack of appropriate size.
2) pass data to the subroutine.
A) in a register. -~ B) in a table. C) in a stack.

Subroutine Respounsibilities

A subroutine has responsibilities that must be done before it can work
properly with the calling program. Let's look at these responsibilities in
the order a subroutine would perform them.

The first responsibility is to save the contents of any registers it
will use and therefore modify in the S stack. This lets the subroutine
restore the registers to their original contents just before returning to
the calling program. However, not all the registers need or can be saved.
The PC register does not have to be saved because the JSR has already done
that. The S register can not be saved because a stack pointer can not be
saved in its own stack. Therefore, the only registers that may need to be
saved are A, B, D, X, Y, U, CC, and DP. Of these, the registers that should
be saved are those the subroutine uses. For example, the sample subroutine
CSCREN saves the A, X, and CC registers at line 1050. The A and X registers
are explicitly used in this subroutine and the CC register is implicitly
used.

Subroutines that return their result via a register to the calling
program need not save that register. For example, the sample subroutine
VIDEO does not save the A register, at line 1280, because its final
contents will be the result to return to the calling program and not its
original contents.

One may adopt a programming discipline where the CC register does not
have to be saved in‘a subroutine. This speeds up its execution by a few
microseconds and requires one less byte of stack area for each subroutine.
The technique requires that the state of the bits in the CC register be
tested, or branched on, immediately after they are set or cleared. In other
words, a branch instruction should immediately follow an instruction whose
results are to be tested. Therefore, a subroutine does not have to preserve
the CC register for later use by the calling program. For example, in the
following source code:

DEC TCNT
BNE TAl
JSR FIX
STA ,Y+

the subroutine FIX does not have to save the CC register, which indicates
the result of the DEC instruction, because its state has already been



tested by the BNE instruction.

A case where the CC register does not have to be saved is when the
subroutine passes its results back in the CC register. For example, a
subroutine that searches an area of memory for a particular value may
indicate a find or no-find result in the CC register.

A subroutine may not need to save any registers if the main program

doesn’t require its registers to be the same after the subroutine returns.
In this case the main program must be designed to use memory instead or
registers to hold data at the time a subroutine is called. This arrangement
simplfies subroutine design and reduces stack requirements, but makes the
main program somewhat more complicated.

The second responsibility goes hand-in-hand with the first; restoring
the contents of the saved registers. The registers pushed into the S stack
at the beginning of the subroutine must be pulled at the end of the
subroutine. The same number of bytes must be pushed then pulled so the S
register contains its original value; this lets the RTS instruction
properly pull the PC register from the stack. The calling program may also
depend on the S register containing its original value.

If a subroutine establishes its own S stack for use in calling another
subroutine, or any other use, the subroutine should save the contents of
the S register in a pair of reserved memory locations after saving the
other registers to be used. The subroutine can then set up an S stack for
its own uses. On completion of the subroutine, the S register must be
restored by loading it with its saved value. Then the other registers can
be restored by pulling them from the S stack.

The final duty of a subroutine is to return to the calling program. The
RTS pulls the original contents of PC from the S stack and puts it in the
PC register, causing program execution to resume at the instruction
immediately following the JSR. Another way to return is to combine the PULS
(restore registers from the S stack) and RTS instructions into one: PULS
x,x,X,PC. This one instruction restores registers and pulls the PC register
from the S stack.

A skeleton form of a subroutine that does not establish its own S stack
is shown in Fig. 7-6.

NAME ' PSHS x,x,... save registers

_____ task instructions

PULS x,x,... restore same registers
RTS return to calling prog

Fig. 7-6 Skeleton of a Simple Subroutine.




The responsibilities of the subroutine in Fig. 7-6 can be summarized
as: 1) save registers to be used.
2) perform task.
3) restore same registers.
4) return to calling program.
The skeleton of a subroutine that establishes its own S stack is shown
in Fig. 7-7.

NAME PSHS x.,x,... save registers
STS SAVES save old S contents
LDS #YYY+NEWS| establish new stack

_____ task instructions

LDS SAVES restore S

PULS x.,x,... restore same registers

RTS return to calling prog
SAVES RMB 2 area to store S
NEWS RMB YYY new stack area

Fig. 7-7 Skeleton of Subroutine with Its Own S Stack.

The responsibilities of the subroutine in Fig. 7-7 can be summarized as:
1) save registers to be used.
2) save: S register.
3) establish new S stack.
4) perform task.
5) restore S register.
6) restore used registers.
7) return to calling program.

Tying It Together ,

Each time a subroutine is called, more registers are pushed on the S
stack. Each time a subroutine returns, the same registers are pulled from
the stack. As a result the value in the S register after returning is the
same as it was just before calling the subroutine. The value in the S
register is the same before and after a JSR or BSR instruction.

A specific example of a main program using subroutines is shown in
Listing 7-7. Lines 100 - 310 make up the main program. This program clears
the screen with the CSCREN subroutine and then displays a line of text. The
video display codes are generated with the VIDEO subroutine. Upon
completion it stays in a loop at line 270.

Lhrad



100 *PROGRAM NAME: SAMPLE

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1200
1210
1220

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

*BY AUTHOR - DATE

*THIS PROGRAM WILL USE THE CSCREN TO CLEAR THE
*SCREEN, THEN DISPLAY A LINE OF TEXT USING THE
*VIDEQ SUBROUTINE. UPON COMPLETION IT WILL

*STAY IN A LOOP. PRESS RESET TO EXIT THIS PROGRAM.
Fededededekdedededod deddedede ke ok ok ek ok ek ook ek ek dek ke k ek kR Rk

SAMPLE LDS #6+NSTAK
JSR CSCREN
LDX #SATEXT
LDY #$480
LDA X+
CMPA #304
BEQ SAEND
JSR VIDEO
STA ,Y+

BRA SABG
BRA SAEND

SABG

SAEND

ESTABLISH STACK
CLR SCREEN

GET ADDR OF TEXT
ADDR OF DISPLAY LINE
GET TEXT CHAR

END OF TEXT CODE?
IF SO, GOTO END
CNV TO VIDEO

PUT ON SCREEN

DO AGAIN

WAIT IN LOOP

KkkkkddkkkkkRhhkhkkkkhhhkkhhhkhhkhdhhkkhkhhkhkkdrhkiir

NSTAK = RMB 6

STACK AREA

SATEXT FCC !THIS TEXT DISPLAYED WITH TWO SUBROUTINES!

FCB 04

END OF TEXT CODE

kR Rk kRhdkdhdokdhdokkdkdedodokkokddok & dokdddkdkdoidk dokdokk
*SUBROUTINE NAME: CSCREN

*BY AUTHOR - DATE

*THIS SUBROUTINE WILL CLEAR .THE TEXT SCREEN

*IT REQUIRES 4 BYTES OF THE S STACK
B e T T T s s

CSCREN PSHS A,X,CC
LDX #3400
LDA #8360
STA , X+
CMPX #$5FF
BLS CS1
PULS A,X,CC
RTS

Cs1

SAVE A, X, CC
START OF DISPL BUF
SPACE CODE

PUT IN BUFFER

END OF BUFFER?

IF NOT,DO AGAIN
RESTORE A,X, CC
RETURN

KkkkdkdkdhdhdhkkkhkhkhkkkRkihkkkhhiihkihkhkkkRhhhhkkiikkkk

*SUBROUTINE NAME: VIDEO

*BY AUTHOR - DATE

*THIS WILL CALCULATE THE VIDEO DISPLAY CODE
1230 *OF A CHARACTER WHOSE ASCII CODE IS IN A. THE
*CHARACTER SET IS UPPER CASE ALPHANUMERIC AND
*SYMBOLS. THE VIDEO CODE IS RETURNED IN A.

*THIS SUBROUTINE USES 1 BYTE OF THE S STACK.
kgl dde ko dodkdod dod dek deoR R R R Aok ek sk e ek ok o ok ek ke

PSHS CC
CMPA #340
BHS VIS
ADDA #3$40
PULS CC
RTS

VIDEO

VIS

SAVE REGS
CHAR TYPE?

IF NO CNV,GOTO
CNV TO VIDEO
RESTORE REGS
RETURN

dekdodekdodokokhdokhdkdkdokkkkkkkhkkkhkhkkididkkkkkkkkdkkkk

END

Listing 7-7 The SAMPLE program.

The stack area is established at line 290 and the S register is loaded
at line 170 with the address of the last location of the stack area plus



one. The stack area size is determined by the subroutine that stores the
largest number of bytes. In this case the stack area is six bytes long -
two to store the PC register plus four needed by the CSCREN subroutine.
Listing 7-7 is assembled with the A/IM/WE command without any errors.
To run it, go to ZBUG and enter the command GSAMPLE. The screen should be
cleared and the text line defined at line 300 displayed. To return to ZBUG,
press the Reset button on the back of the Color Computer.
A subroutine can assume the responsibility of establishing its own S
stack for use by a subroutine it calls. A calling program establishes a
stack for the subroutine it calls to store its registers in. This
relationship is illustrated in Fig. 7-8.

Main Prog SUBA SUBB
LDS xxxx PSHS r,r PSHS r,r
- - == STS OLD - - - -
i LDS yyyy ol
JSR SUBA| -—-—- --—
- - - JSR SUBB RTS
LDS OLD
stack storage PULS r,r
of SUBA RTS
regs
area OLD
XXXX stack storage of
area SUBB’s regs
yyyy

Fig. 7-8 A Subroutine Establishing Its Own S Stack.

The Color Computer can be set up to perform multi-tasking or
multi-programming, the process of executing more than one program on a
time-sharing basis. Two or more programs would be in memory at the same
time, and a supervisor program would direct the MPU to execute one program
for a time, and then execute another program for a time. Memory can be
saved by having just one set of currently used subroutines in memory for
any program to use. However, a problem arises if a program is temporarily



suspended while it is executing a shared subroutine. If that subroutine has
its own data area for manipulating data, data may be there when it is
suspended. If another program uses that same subroutine, the data in the
subroutine’s data area will be modified. When the first program is resumed,
that subroutine will resume without the original data. This problem is
solved by making the subroutines re-entrant and having a supervisor that
saves and restores registers when switching from one program to another. A
re-entrant subroutine does not establish its own data areas but manipulates
data only within the registers. The CSCREN and VIDEO subroutines are
re-entrant, but HXVAL is not.

INTERRUPTS

An interrupt performs a function similar to that of the JSR or BSR
instructions. It causes the MPU to jump to a program section at a specific
address. The two categories of interrupts are software and hardware.
Software interrupts are caused by executing an SWI, SWI2, or SWI3
instruction. Therefore, they are planned or under the direct control of the
program. The hardware interrupts, IRQ, FIRQ, and NMI, are initiated by an
external electrical device that activates a signal to the appropriate pins
of the MC6809E dual-in-line package. They might be more accurately called
external interrupts because they come from outside the MPU. A hardware
interrupt can occur at almost any time and so be considered unplanned; the
moment of its occurrence can not be controlled by the program.

When an interrupt is processed, the MPU is directed to a program
section known as an interrupt handler by the interrupt vector table in
ROM. The interrupt vector table resides in ROM at addresses $FFF2 - $FFFF.
This table contains seven addresses, each occupying two consecutive
locations. Each of six is dedicated to directing the MPU when one of six
interrupts occurs. The seventh address directs the MPU when a RESET occurs.

Program Interrupt
Handler
- - - - hardware - - ==
- - W -t T
SR P RTI

Fig. 7-9 General Concept of a Program Being Interrupted.

The interrupt handler is the program section the MPU is directed to by
an interrupt via the interrupt vector table. The interrupt handler may have
a task to perform, and upon completion execute an RTI instruction which
will cause the interrupted program to resume its operation. A program that



is interrupted may never be returned to, however. For example, the
interrupt may signal a condition that tells the program to quit doing its
present task and work on another. Fig. 7-9 shows a program being
interrupted by a hardware interrupt and the interrupt handler returning to
the program. This looks similar to a program calling a subroutine.

Interrupt Operation

The operation of the various interrupts will be presented. The RESET
will also be covered since its operation is similar to that of the hardware
interrupts. (For more information see Chapters 3 and 5.) The interrupt
vector table, which directs the MPU upon an interrupt, is shown in Table
7-1.

User Address Effective Address
RESET FFFE + FFFF $A027
NMI FFFC + FFFD $0109
SWI FFFA + FFFB $0106
IRQ FFF8 + FFF9 $010C
FIRQ FFF6 + FFF7 $010F
SWI2 FFF4 + FFF5 $0103
SWI3 FFF2 + FFF3 $0100

Table 7-1 Interrupt Vector Table.

To use the interrupts, a vector jump to each interrupt handler must be
stored at each effective vector address in RAM. When the Color Computer is
turned on, the BASIC program in ROM performs certain initializing
functions, one of which is to store the vector jumps for the interrupts it
uses. BASIC sets up the vector jumps for the IRQ and FIRQ interrupts since
they are the only ones that it uses. If the EDTASM+ module is also plugged
in, the vector jump for the SWI is also set up. The operands of the vector
jumps point to their respective interrupt handlers. The complete vector
jump table, as organized in RAM, can be seen in Table 7-2 in the mnemonic
display format.

Address | Instruction Content

$0100 IJMP  xxxx Jump to SWI3 interrupt handler
$0103 IMP xxxx Jump to SWI2 interrupt handler
$0106 JMP - xxxx Jump to SWI interrupt handler
$0109 JMP xxxx Jump to NMI interrupt handler
$010C JMP xxxx Jump to IRQ interrupt handler
$010F JMP - XXXX Jump to FIRQ interrupt handler

Table 7-2 Vector Jump Instruction Table.



An interrupt will vector the MPU to one of the vector jump instructions
which directs the MPU to the actual interrupt handler. Fig. 7-10

illustrates this path taken by the MPU in response to an IRQ interrupt.
Since the vector jump instructions are in RAM they can be changed to point
to interrupt handlers written in assembly language.

Vector Jump
Table

Program

---= IRQ JMP xxxx

- - M Interrupt

- - == Handler

-- = - XXXX | = - - -

- - RTI

Fig. 7-10 Use of the Vector Jump Table.

The software interrupts are the SWI, SWI2, and SWI3 instructions. They
can be used in a fashion similar to the JSR or BSR instructions, but their
results are somewhat different.

The SWI instruction sets the E bit of the CC register and causes the P,
U, Y, X, DP, B, A, and CC registers to be pushed into the S stack when
executed. Then the I and F bits of the CC register are set to mask out any
IRQ or FIRQ interrupts that may occur while executing the SWI interrupt
handler. The MPU finally executes the vector jump instruction at address
$0106, which directs it-to the SWI interrupt handler.

The SWI2 instruction sets the E bit of the CC register and causes the
P, U, Y, X, DP, B, A, and CC registers to be pushed into the S stack. Then
the MPU executes the vector jump instruction at address $0103, which
directs it to the SWI2 interrupt handler.

The SWI3 instruction sets the E bit of the CC register and causes the
P, U, Y, X, DP, B, A, and CC registers to be pushed into the S stack. Then
the MPU will execute the vector jump instruction at address $0100, which
directs it to the SWI3 interrupt handler.

The hardware interrupts perform operations similar to the software
interrupts. The differences are that the IRQ and FIRQ interrupts can be
masked out, or ignored, and the hardware interrupts are initiated by an
external device. The I bit set causes the MPU to ignore an IRQ interrupt
signal and the F bit set masks out the FIRQ interrupt.



The IRQ interrupt sequence takes place if the I bit is clear and pin 3
of the MC6809E dual-in-line package is temporarily set low. The sequence
starts upon completion of the currently executing instruction. The IRQ
interrupt sequence consists of first setting the E bit in the CC register,
then pushing the P, U, Y, X, DP, B, A, and CC registers into the S stack.
Then the I bit is set to mask out any IRQ interrupts that may occur while
executing the IRQ interrupt handler. Finally, the MPU executes the vector
jump at address $010C, which directs the MPU to the IRQ interrupt handler.
This sequence takes about 20 microseconds on the Color Computer.

The FIRQ interrupt sequence takes place if the F bit is clear and pin 4
of the MC6809E dual-in-line package is temporarily set low. The sequence
starts upon completion of the currently executing instruction. The FIRQ
interrupt sequence consists of first clearing the E bit in the CC register,
then pushing the PC and CC registers into the S stack. Then the I.and F
bits are set to mask out any IRQ or FIRQ interrupts that may occur while
executing the FIRQ interrupt handler. Finally, the MPU executes the vector
jump at address $010F, which directs the MPU to the FIRQ interrupt handler.
This sequence takes about 10 microseconds, much faster than any of the
other hardware interrupts. This interrupt is used when the program must
respond very quickly to an external stimulus.

The NMI interrupt sequence is inhibited after a RESET until the S
register has been loaded. The sequence is initiated by pin 2 of the MC6809E
dual-in-line package temporarily set low, and starts upon completion of the
currently executing instruction. The interrupt sequence consists of first -
setting the E bit in the CC register, then pushing the P, U, Y, X, DP, B,

A, and CC registers into the S stack. Then the I and F bits are set to mask
out any IRQ or FIRQ interrupts that may occur while executing the NMI
interrupt handler. Finally, the MPU executes the vector jump at address
$0109, which directs the MPU to the NMI interrupt handler. This sequence
takes about 20 microseconds on the Color Computer.

The RESET sequence is started when the Color Computer is turned on, or
the Reset button is pressed. The I and F bits are set, the DP register is
cleared, and the MPU is directed to address $A027 by the interrupt vector
table. The RESET sequence does not use a vector jump, but instead sends the
MPU directly to BASIC ROM. '

Pre-Interrupt Responsibilities

Several operations must be performed before using an interrupt within
an assembly language program. They are presented in the order in which they
should be performed.

The first instruction of an assembly language program that uses
interrupts should be ORCC #$50. This sets the I and F bits of the CC
register, masking out any IRQ and FIRQ interrupts until the program is
ready for them.



Next the vector jump instruction for each type of interrupt that will
be used must be put in memory at the effective vector address. The jump
operand is the absolute address of the interrupt handler for that interrupt
type. For example, if one were going to use the SWI2 software interrupt,
the vector jump should be put in memory at address $0103 as 7E xx xx. $7E
is the JMP op code and xxxx is the absolute address of the SWI2 interrupt
handler. The interrupt handler should exist in memory along with the main
program and its subroutines. It is a programmer’s responsibility to have
assembled the interrupt handler and to know where it resides in memory.

An S stack must be established because all the interrupts cause MPU
registers to be pushed into it. Upon returning from the interrupt handler,
the registers are pulled from the stack by the RTI so the interrupted
program can resume its operation. The size of the stack area is determined
by several considerations. The stack must be large enough for any
subroutine use. The stack area must also be large enough for the
anticipated interrupts. The FIRQ interrupt requires only three bytes of
stack area since it causes only the PC and CC registers to be pushed into
the stack. All the other interrupts require 12 bytes; they push all the
registers except S. If a subroutine is allowed to be interrupted, the stack
area must be that required by the subroutine plus that required by the
interrupt. This is similar to nested subroutines.

Another factor is how many interrupts will be processed before
returning to the interrupted program. It is possible for an interrupt
handler to be interrupted by an external or software interrupt, in which
case more registers will be pushed into the stack before the previous set
has been pulled from it. Therefore, each interrupt processed before
returning will require more stack area. The stack area must be enlarged by
three bytes for an FIRQ, or 12 bytes for any other interrupt, for each
interrupt that occurs before returning. The FIRQ, NMI, and SWI interrupts
set the I and F bits so their interrupt handlers will not be interrupted by
an FIRQ, NMI, or IRQ. The IRQ interrupt sets the I bit so its interrupt
handler will not be interrupted by another IRQ.

At this point the program is ready to use any interrupt except. for the
IRQ and FIRQ. IRQ and FIRQ are generated by other electronic devices within
the Color Computer that must be initiated by the program before they will
be generated. These electronic devices are described in Chapter 9. After
one or both are initialized, the I and/or F bits should be cleared to allow
them. To summarize, before using interrupts within an assembled program:

1) mask interrupts until ready (set I and F bits).
2) set up vector jump instructions.
3) establish S stack.
4) if using an IRQ or FIRQ interrupt.
A) initialize their source.
B) clear the I and/or F bits.



These responsibilities are illustrated in Fig. 7-11 as a skeleton
program preparing to use the SWI2 interrupt.

Main Program

ORCC #$50 set Iand F
LDA #$7E
STA %0103 set up

LDX #xxxx vector jump
STX $0104
LDS #3Syyyy set up stack Interrupt
-- - Handler (SWI2)
- - XXXX |- - - -
SWI2 - —— -

RTI

stack
area

yyyy

Fig. 7-11 Preparing for SWI2 Interrupt.

Interrupt Handlers

The interrupt handler program section has its duties to perform if it
is to work properly with the main program. The duties are presented in the
order they should be performd.

None of the interrupt handlers, except FIRQ, need store MPU registers;
the interrupt sequence will already have done that. The FIRQ handler may
save the registers it uses if the interrupted program requires it.

Now the interrupt handler can perform its task. That may be any
specific task, as a subroutine has its task, or it may direct the MPU to
start executing a different program.

The interrupt handler for the IRQ and FIRQ should reinitialize the
device that generates the external interrupts so they will occur again,

(This is described in Chapter 9.) If the FIRQ interrupt handler has pushed
some registers at its beginning, the registers must be pulled from the S
stack.

The last instruction of an interrupt handler is RTI, which returns the
MPU to the interrupted program. The RTI will pull the CC register from the
S stack and inspect the E bit. If the E bit is set, all the MPU registers



except S will be pulled from the stack. If the E bit is clear, only the P
register will be pulled from the stack. If there was any modification of
the S register by the interrupt handler, the S register should be restored
to its original contents before executing the RTI, so the RTI will work
properly. An example of a skeleton SWI2 interrupt handler can be seen in
Fig. 7-11.
The responsibilities of an interrupt handler that will return to the

interrupted program can be summarized:

1) if FIRQ, store registers if necesary.

2) perform task.

3) if IRQ or FIRQ, re-initilize interrupt source.

4) if FIRQ, restore saved registers.

5) return with an RTI.

Wrap Up

The use of the IRQ interrupt in conjunction with subroutines is
demonstrated in Listing 7-8, named SAMPLI1. It is a modified version of the
program SAMPLE. A block diagram of SAMPL1 can be seen in Fig. 7-12.

CSCREN Subr

RTS
Main Program VIDEO Subr
JSR CSCREN| = e - - -
————— RTS
JSR VIDEO

- 7BUG

Fig. 7-12 Block Diagram of SAMPLI1 Program.



SAMPLI1 uses two subroutines, CSCREN and VIDEO, to clear the screen and
display a line of text. It then waits for an IRQ interrupt. The IRQ
interrupt handler shifts whatever is on the screen one position to the left
on every tenth occurrence of the IRQ interrupt. In the Color Computer, the
IRQ can be set up to occur every 16.67 milliseconds, or 60 times a second,
as in this program. The interrupt sources are described in detail in
Chapter 9. The IRQ interrupt handler, upon its 2000th exectuion, returns to
ZBUG with an SWI interrupt. This program runs for 33 seconds.

The S stack area is determined by the user or users that use the
largest amount of stack area. In this program the maximum size is 12 bytes
for the IRQ interrupt plus another 12 bytes for the SWI, a total of 24
bytes.

100 *PROGRAM NAME: SAMPL1

110 *BY AUTHOR - DATE

120 *THIS PROGRAM WILL USE THE CSCREN TO CLEAR THE
130 *SCREEN, THEN DISPLAY A LINE OF TEXT USING THE
140 *VIDEO SUBROUTINE. UPON COMPLETION IT WILL

150 *STAY IN A LOOP WAITING FOR AN IRQ INTERRUPT.
160 Fkrkdmkendkkk ik idonhkkdokdkokdookkkiiokk ok koo

170 SAMPL1 ORCC #%$50 SET I AND F BITS
180 LDA #$7E JMP OP CODE

190 STA 3010C STORE IT

200 LDY #LSHIFT ADDR OF INT HANDLER
210 STY $010D STORE IT

220 LDS #24+NSTAK  ESTABLISH STACK
230 JSR CSCREN CLEAR SCREEN

240 LDX #SATEXT GET ADDR OF TEXT
250 LDY #$480 ADDR .OF DISPL LINE
260 SABG LDA X+ GET TEXT CHAR

270 CMPA #3504 END OF TEXT CODE?
280 BEQ SAEND IF S0,GOTO END

290 JSR VIDEO CNV .TO VIDEO

300 STA ,Y+ PUT ON SCREEN

310 BRA SABG DO AGAIN

320 SAEND  LDA $FF03 READ CRB

325 ORA #305 SET BITS 0+2

330 STA $FF03 STORE .IN CRB

340 LDA $FF02 READ DRB(CLR FLAG)
350 ANDCC #$EF CLR I BIT

360 SALOOP BRA SALOOP LOOP AND WAIT

70 Fkkdkkkkkkkkk koo kR kR k ek kR kkokok Rk ok
380 NSTAK RMB 24 STACK AREA

390 SATEXT FCC ITHIS TEXT DISPLAYED ‘WITH TWO SUBROUTINES!
400 FCB 04 END OF TEXT CODE

410 Fhkdekdkkkdkdikhkkhihkkhkkhhkkkkkkkihkkikikhikkkkkkkhkk

1000 *SUBROUTINE NAME: CSCREN

1010 *BY AUTHOR - DATE

1020 *THIS SUBROUTINE WILL CLEAR THE TEXT SCREEN
1030 *IT REQUIRES 3 BYTES OF THE § STACK

1040 Fddkk gk R kR kkkhdkdddkkdkkdokkkddkkokkdkdkdokkdodkidkkk

1050 CSCREN PSHS A,X SAVE A AND X

1060 LDX . #$400 START OF DISPL BUF
1070 LDA #360 SPACE CODE

1080 Cs1 STA X+ PUT IN BUFFER

1090 CMPX . #$5FF END OF BUFFER?



1100
1110
1120
1130
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1622
1624
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730

BLS CS1
PULS A,X
RTS

IF NOT,DO AGAIN
RESTORE A AND X
RETURN

wFRKddhkhddeoddokdkdekkkdkiokkkdk Rk k ik ik k Ak khkd ki kk

*SUBROUTINE NAME: VIDEO

*BY AUTHOR - DATE

*THIS WILL CALCULATE THE VIDEO DISPLAY CODE
*OF A CHARACTER WHOSE ASCII CODE IS IN A. THE
*CHARACTER SET 1S UPPER CASE ALPHANUMERIC AND

*SYMBOLS. THE VIDEO CODE WILL BE RETURNED IN A.
Fekkkdekdokkkkkkkkkkkkdd ko kR ddokk sk gk dok kR kR kR AR

VIDEO  CMPA #340
BHS VIS
ADDA #340
VIS RTS

CHAR TYPE?

IF NO CNV,GO TO
CNV TO VIDEC
RETURN

Fekdkkok ok Rk ddkkdddokiokkdkdok kokdok ek ko kddkdkk deok ek R ok
*IRQ INTERRUPT HANDLER NAME: LSHIFT

*BY AUTHOR - DATE

*THIS INT HANDLER WILL SHIFT WHATEVER IS ON THE
*TEXT SCREEN ONE POSITION TO THE LEFT ON EVERY
*10TH INTERRUPT. ON THE 2000TH INTERRUPT IT WILL

*RETURN TO ZBUG VIA SWI. 24 BYTES OF STACK ARE USED.
Feiedekdedokkodkd kb ko kdkdeok ok kR ke ke ko hokk ke ko ko k Rk kR kK

LSHIFT LDX LSCNTA
LEAX 1,X
STX LSCNTA
CMPX #2000
BEQ LSEND
LDA LSCNTB
INCA
STA LSCNTB
CMPA #10
BNE LSRET
LDX #3401
LDY #$400
LSA LDA X+
STA ,Y+
CMPX #$5FF
BLS LSA
CLRA
STA LSCNTB
LDB $FF02
RTI
LDD #80
STD LSCNTA
STA LSCNTB
SWI

LSRET

LSEND

GET A CNT

INC A CNT

STORE A CNT

LAST INTERRUPT?
[F SO,RET TO ZBUG
GET B CNT

INC B CNT

STORE B CNT

TIME TO SHIFT?

IF NOT,RETURN
BUFFER SOURCE
BUFFER DESTINATION
GET DISPL CODE
MOVE DISPL CODE
END OF BUFFER?

IF NOT,DO AGAIN
GET ZERO

CLR B CNT

READ DRB(CLR FLAG)
RETURN TO PROGRAM
CLR REG

CLR A CNT

CLR B CNT

RETURN TO ZBUG

Kkhkkihkkkkhkkkhkkhkhkkhkhhrrhkhhhhikkkkrkrkkhkik

LSCNTA FDB 0000
LSCNTB FCB O

CNTA=0
CNT B =0

khkkdkkhkkhkkkhkikkdkhhhkhdkkhhkhkhihkhhikikhihkikk

END

Listing 7-8 The SAMPL1 Program.

In the Listing 7-8 are examples of setting up for subroutine and
interrupt use. Assemble the source code into memory with the A/IM/WE

command and verify that there are no errors. Then go to ZBUG and run it by




typing in GSAMPLI1. The vector jump for the IRQ has been modified by this
program. Therefore, one should turn the computer off and then on after
running and experimenting with the SAMPL1 program, to set that vector jump
back to its normal value.



CHAPTER 8

Assembly Language and Extended Color BASIC

BASIC, because it exists in internal ROM, is always available and
serves as a starting point for many programs, including assembly language
programs. Programs assembled on tape can be loaded into memory via BASIC’s
CLOADM command and executed with the EXEC command. One may also
construct subroutines for BASIC programs to use, and assemble them on tape.
BASIC can load the subroutines from tape into memory and call them with the
USR function. The subroutines can increase execution speed and provide
capabilities BASIC does not have.

The BASIC interpreter is composed of many subroutines available for use
by assembly language programs. An advantage of these subroutines is that
they exist in ROM and therefore do not take up RAM space. Also, since they
already exist the time and effort of designing and programming them are
avoided.

USING ASSEMBLED PROGRAMS WITH BASIC

Assembly language programs and subroutines to be used by a BASIC
program must share available memory with BASIC. BASIC uses certain areas of
memory for its own purposes. One should ensure that assembly language
programs to work in concert with a BASIC program do not use BASIC’s
designated areas in a conflicting manner. It is best to put an assembled
program into an area of memory BASIC does not -use. :

Normally BASIC uses memory locations starting at address 0000 and
upward; and starting at the highest RAM address and downward. That is, it
uses memory locations starting at both ends of available RAM and works
toward the center. This can be seen in Fig. 8-1. These addresses are for a
16K computer, except for those in parentheses, which are for a 32K
computer.



Memory Use Hexadecimal Address

Internal 0000
Use
Text 0400
Buffer
Graphics 0600
Buffer
BASIC 0601+(N x 600)
Statements
Numeric CXXXX
Variables
Unused

3EDO (7EDQ)
S Stack

3F36 (7F36)
String
Variable Area 3FFF (7FFF)

Fig. 8-1 Memory Use by Extended Color BASIC.

Memory locations 0000 - $03FF are used by BASIC for internal
operations. Locations $400 - $5FF are for the text display buffer. The
graphics buffer is composed of N pages, and each page is $600 locations
long. The graphics display buffer is initialized to four pages so it
occupies addresses $600 - $1E00. The number of pages in the graphics buffer
can be changed with the PCLEAR command.

BASIC program statements are stored in memory after the graphics
buffer. Addresses $19 and $1A contain the address at which the statements
begin in memory. With a graphics buffer of four pages, the statements are
stored starting at address $1E01. This can be verified by seeing that $1E01
is contained in addresses $19 and $1A. Numeric variables are stored after
the statements. Addresses $1B and $1C contain this starting address. Memory

is not assigned to each numeric variable until it is used by the BASIC
program; seven locations are required for each numeric variable and five

are required for each element of a numeric array. The unused area in the
middle of RAM is the area not used by BASIC programs which do not use all
of RAM. The area at the highest address of RAM is reserved for string
variables. This area is initialized to 200 decimal bytes but can be changed
with the CLEAR command. Below the string variable area is BASIC’s S stack.
The stack area is about 100 decimal locations long.

Memory For Assembled Programs
A goal is to determine the starting and ending addresses of an unused



area in which to load assembled programs that will work with BASIC

programs. This is not easy to do since the numeric variable area is not

established until the BASIC program is run. You may use unused area in the
middle of RAM for assembled programs only when the BASIC programs are short
and simple. Then it is relatively safe to load an assembled program into

memory somewhere between addresses $2600 and $3E00 (16K) or $7E00 (32K)
without performing extensive memory use calculations.

Another way to find a memory area for assembled programs is to use the
BASIC CLEAR command at the very beginning of a BASIC program or before the
program is run. This lets the programmer control two conditions affecting
how memory is used by BASIC. The CLEAR command has the following format:

CLEAR XXX, YYYY

This command assigns XXX number of bytes for string variable storage and
sets the top of RAM available to BASIC at the address YYYY. Memory above
YYYY is reserved for other uses such as assembled programs and subroutines.
For example: CLEAR 100,&H3000 reserves 100 decimal bytes for string
variable storage and tells BASIC that RAM is available only up to address
$3000. After using this command a BASIC program’s memory use would be
similar to that in Fig. 8-1. However, addresses $3001 and up would not be
available to BASIC; the string variable and S stack areas would start at

$3000 and extend downward. The area above address $3000 is where assembled
programs can be put.

Executing (EXEC) Assembled Programs
The EXEC command is used to execute assembled programs and can also be
used to call assembled subroutines. The format of the EXEC command is:

EXEC expression

The expression can be blank, a constant, a numeric variable, or an
arithmetic expression. When the EXEC is performed the current contents of
PC are pushed into the S stack and the MPU is directed to start executing
at the address specified by the expression.

When the expression is blank, as: EXEC, the MPU is directed to the
address contained within addresses $9D and $9E. If $9D contains $31 and $9E
contains $00, the MPU will be directed to start executing instructions at
address $3100. When the expression is a constant, such as: EXEC 12000, the
MPU is directed to start a program at decimal address 12000. Prefixing the
constant with &H indicates the number is hexadecimal. Examples are:

10 X=&HI1000
20 EXEC X
20 EXEC X*3



Statement 20 will cause the MPU to start executing at $1000; statement 30
will direct the MPU to address $3000.

When the BASIC interpreter is running, it is using its S stack. An
executing assembled program or subroutine must take care to preserve and
not destroy the contents of that stack and to return the S register to its
original contents before returning to BASIC. There are about 30 decimal
bytes available for use in BASIC’s S stack into which a program can push
the MPU registers. Before returning to BASIC the same registers must be
pulled from the S stack to return S to its original value.

A program or subroutine that is to return to BASIC does not have to
preserve any of the registers except S. This is unlike an assembly language
subroutine which must preserve the contents of the registers used. A
skeleton of a program to return to BASIC that does not use the S register
is shown in Fig. 8-2.

Assembled
Program

EXEC—>| - - - -

- - - instructions

RTS | ——> return to BASIC

Fig. 8-2 A Subroutine That Does Not Use the S Register.

A program executed from BASIC may establish its own S stack for use by
a subroutine it calls. Perhaps the program needs a stack area larger than
the 30 bytes available in BASIC’s stack; the program should establish its
own S stack area. If that program is to later return to BASIC, it must load
S with its original value, which should have been saved earlier. Fig. 8-3
shows a skeleton of a subroutine that establishes its own stack. This shows
the sequence of ‘a subroutine saving BASIC’s S register, setting up its own
stack pointer, performing its task, restoring BASIC’s stack pointer, and
returning to BASIC. Notice that a subroutme called by BASIC does not have
to save any MPU registers.

A limitation of the EXEC command is that it can not directly pass an
argument to'a subroutine. The only way data can be passed to a subroutine
is to first put the data in a predesignated memory location. Then the
subroutine must always get the data from the same predetermined address.
Basically, the EXEC command is not meant to be used to call subroutines,
but to simply direct the MPU to a specific program.



Assembled
Subroutine (SUBA)

EXEC—|{SUBA STS SAVE save S reg
LDS #40+NEWS new stack pointer

- task instructions

LDS SAVE restore S reg
RTS return to BASIC
SAVE RMB 2

NEWS RMB 40
new
stack area

Fig. 8-3 A Subroutine Establishing an S Stack.

An example of using the EXEC command to call an assembled subroutine is
presented in Listing 8-1. The BASIC program asks the operator to enter a
decimal number. It then displays BASIC’s binary floating point
representation of that value as it exists in five bytes in memory. The
assembled subroutine has the task of displaying the hexadecimal contents of
the five bytes on the screen.

10 CLEAR 100,&H2900
20 CLOADM “PRFPM,&H2A00

30 Y=&H2A00:CLS

40 INPUTHENTER A NUMBER ~X= ";X

50 P=VARPTR(X)

60 PRINTMITS BINARY FLOATING POINT™

64 PRINTUREPRESENTATION AT ADDR ";HEX$(P)
66 PRINTMIN HEX IS"

68 PRINT

70 PU=FIX(P/256):PL=P-256*PU

80 POKE Y,PU:POKE Y+1,PL

90 EXEC Y+2

100 PRINT"DO YOU WANT TO ENTER ANOTHER"
110 INPUT"NUMBER - Y OR N';N$

120 IF N$="y" THEN 25

130 END

Listing 8-1 The Use of the EXEC Command.
Line 10 reserves memory above address $2900 for use by programs other

than BASIC. At line 20 the subroutine object code is loaded into the
reserved area. At line 30 the variable Y is set equal to the load address



of the subroutine. Then the value for X is obtained, and its pointer is
found at line 50. At line 70 is formed the upper and lower bytes of the
pointer address which are POKEd into memory (passed to the subroutine) at
line 80. Line 90 calls the subroutine, which displays the hexadecimal
contents of the five bytes whose address was POKEd into memory. The
assembly language subroutine source listing is in Listing 8-2.

100 ek dk ik kdkdkkkkhkdkhkhkkkkkrkkkikkikkhkkhkkik

110 *PROGRAM NAME: PRFP

120 *BY AUTHOR - DATE

130 *THIS PROGRAM WILL RUN AS A SUBROUTINE WHEN

140 *CALLED BY BASIC'S EXEC COMMAND. THE POINTER TO

150 *A NUMERIC VARIABLE SHOULD BE PUT IN ITS FIRST

160 *2 ADDRESSES AND THEN EXEC TO THE THIRD. THE

170 *PROG WILL DISPLAY THE HEX CONTENTS OF THE 5

180 *BYTES AT THE POINTER ADDR. THIS PROG IS RELOCATABLE

190 dekkkkkkkkkhkkkkkkrhkhhkhkhkhkhhhkhhhdhhdkikkhkikd

200 PRFP RMB. 02 POINTER AREA

210 PR1 LDA #3$06 COUNT VALUE

220 STA PRCNT,PCR  PRESET CNT

230 LDY PRFP,PCR GET DATA POINTER
240 LDU #$484 GET DISPL ADDR
250 PR2 DEC PRCNT,PCR  DEC CNT

260 BEQ PREND IF 0, GOTO END
270 BRA PR3 GOTO CNV & DISPL
280 PR2A LEAY 1,Y INC DATA POINTER
290 LEAU 2,V INC DISPL POINTER
300 BRA PR2 DO AGAIN

310 PREND ~ RTS RETURN TO BASIC

220 FkkRRAKRRRIAR K kIR Ihkkhkkkhhhkkikkhkkkikkhhkhkkhkk

330 *CONVERT HEX DIGITS OF BYTE AT ADDR IN Y TO
340 *THEIR VIDEO CODES AND PUT THEM IN DISPLAY

350 *BUFFER ADDR IN U REG.
G0 FhdkRRK R IR K KRR EFR IR RIET R IRk Rk oA A kK

380 PR3 LDB ,Y GET BYTE

390 LDA #$10 MULTIPLIER

400 MUL SHIFT UPER NIBBLE INTC A
410 CMPA #309 GREATER THAN 9?

420 BHI PRCVA 1F SO,CONV.TO ALPHA
430 ORA #$70 CONV TO NUMERIC CODE
440 BRA PRCVB GO STORE IT

450 PRCVA  ADDA #$37 CONV TO ALPHA

460 PRCVB  STA PRBYDS,PCR STORE IT

470 LDA ,Y GET BYTE

480 ANDA #$0F GET LOWER NIBBLE
490 CMPA #3$09 GREATER THAN 9?

500 BHI PRCVC IF SO,CNV TO ALPHA
510 ORA #$70 CNV TO NUM CODE

520 BRA PRCVD GO STORE IT

530 PRCVC  ADDA #$37 CNV TO ALPHA CODE

540 PRCVD ° STA ‘1+PRBYDS,PCR STORE IT

550 Fekkkhkkhdhihkkhkkikkkhkrikikikkkkkrhkkhkhkhhhhhhidik

560 *PUT 2 VIDEO CODES AT PRBYDS INTO DISPL BUFFER
570 kkihdhkkkkdkdk Rk kR ok k dek dk Rk ko ok
580 LDD PRBYDS,PCR GET VIDEO CODES

590 STD ,U++ PUT INTO BUFFER

600 BRA PRZA GO TO CONTROLLER




610 Fxdhkkkkkhkhkhhkhhhhhhrhkdhdhkdkhhhihhhhhkdrhdhdrbdrks

620 PRBYDS RMB 2 WORKING AREA

630 PRCNT  RMB 1 COUNTER

BLO FHFFRRFRRFIRIIIRRIIRRIEFTRTRFFHIFFRKARRF KT Aok TRk ok
650 END

Listing 8-2 The PRFP Subroutine.

This program is relocatable, since the PC relative addressing mode is
used. The operand suffix (,PCR) specifies PC relative addressing. All
operand addresses of operands inside this program are referenced with this
addressing mode. Thus, this program can be loaded at any address that does
not conflict with the BASIC program and still work.

At line 200 two bytes are reserved that will receive a pointer from a
BASIC program. These two bytes are at locations 2A00 and 2A01 when the
subroutine is loaded at address $2A00. This source code should be assembled
on tape with the command: A PRFPO/WE. The object code file name is PRFPO.
Note that there is no ORG statement in this subroutine.

When the BASIC program and assembled subroutine are run, the binary
floating point representation of a number is displayed in hexadecimal. The
first byte, reading left to right, is the exponent and the other four bytes
are the mantissa. See Chapter 2 for a refresher on binary floating point
representation. ‘

Calling Subroutines (DEFUSRn and USRn)

Normally a subroutine is called from a BASIC program with the DEFUSRn
and USRn functions. The starting address of the subroutine must first be
defined by the DEFUSRn function. The format of DEFUSRn is:

DEFUSRn= expression

n indicates one of ten (0 - 9) subroutines. The value of the expression is
taken as the starting address of subroutine n. The expression can be a
numeric constant, numeric variable, or an arithmetic expression. Examples
are:

10 DEFUSRO=&H2A00

20 DEFUSRI1=K

30 DEFUSR2=&H1000+2*K

The above statements define the starting address of three subroutines
numbered 0, 1, and 2. Subroutine 0 is specified at line 10 as starting at
address $2A00. Subroutine 1 has a starting address equal to the value of K.
Subroutine 2 starts at an address equal to $1000 plus two times the value
of K.

After the starting address of a particular subroutine is defined, it is
called with the USRn function. The n identifier must be the same as the n



of the DEFUSRn function. The format of the USRn function in a statement
is:
BV = USRn(pass arg)

The (pass arg) is the argument passed to the subroutine; the BASIC variable
(BV) is assigned the value returned by the subroutine. Performing a USRn
function causes the PC register to be pushed into the S stack and the MPU
to be directed to the address specified by DEFUSRn. The argument is passed
to the subroutine in the A and X registers. The BASIC program in Listing
8-3 demonstrates calling a subroutine.

10 DEFUSR3=&H3000
20 Y=88: X=0

30 X=USR3(Y)

40 PRINT X

Listing 8-3 The Use of the DEFUSR and USR Functions.

At line 10 the address of subroutine 3 is defined. At line 20 the value
of argument Y is established. The subroutine is called at line 30, where Y
is passed to the subroutine. When the subroutine returns to BASIC,
statement 40 is performed with the variable X equal to the result of the
subroutine. However, it should be understood that not all subroutines
require an argument and not all return a result.

The arguments that can be passed to a subroutine with the USRn function
are numeric constants and variables, string constants and variables, array
elements, and expressions. Some examples are:

USR0(125.2) USR3(3+N/256)
USR1(NS$) USR2("ABCD")

The results returned by a subroutine can be a numeric variable, string
variable, or an array element. The allowed combinations of pass arguments
and receive variable types are:

X=USRO(Y)
N=USR1(X$)
M$=USR2(X$)

The subroutine has the responsibility of returning a result that matches
the receiving variable type. For instance, in the second example above the
subroutine receives a string and must return a numeric value.

m Passing a Numeric Argument to a Subroutine
When control is given to the subroutine, the A and X registers’
contents describe the data passed to it. If the passed argument is numeric,



the A register will be clear and the X register will contain the pointer to
the value. The numeric value will be in a memory area known as the
floating point accumulator (FAC). The value is represented in a
slightly different form of binary floating point composed of six bytes.
This form, as shown in Fig. 8-4, has the exponent in the most significant
byte.

mantissa sign bit(1=neg; 0=pos)

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L J

. LY .
exponent normalized mantissa

Fig. 8-4 Binary Floating Point Format in FAC.

The exponent is represented in a type of signed binary where the
exponent value is found by subtracting $80 from the hexadecimal value in
the byte. It can also be found by subtracting decimal 128 from the decimal
contents of that byte. For example, if the exponent byte contained $83
then:

exponent = 83,, - 80, = 316
or
exponent = 131,, - 128,, = 310

The mantissa is stored in a normalized format in the remaining five
bytes. However, the MSB of the last byte is not used to calculate the
magnitude of the mantissa. That bit indicates the sign of the mantissa; the
sign is positive if clear or negative if set. A value of zero is
represented by a 00 exponent byte, and the mantissa is ignored. Here’s an
example of a number in the FAC: :

FAC = 7F C0 00 00 00 80
VALUE = -.11 x 27! = - 011, = -.375

To summarize: when passing a numeric variable to a subroutine the A
register will be clear, indicating a numeric argument has been passed to
it, and the X register will point to the FAC which contains the value.

If you don’t want to deal with floating point numbers, the INTCNV
subroutine can be called by the assembled subroutine. This is a subroutine
in BASIC ROM at address $B3ED that will convert the contents of FAC to a
fixed point integer and pass that back to the assembled subroutine in the D
register. The value in the D register will be in signed binary, therefore,
the range of values is limited to -32768 - +32767 decimal. A demonstratlon
of this can be seen in Fig. 8-5. Observe that the D register, after
returning from INTCNYV, contains $0081, the signed binary equivalent of



decimal 129.

BASIC Program Assembled Subroutine 1
10 X=129 3000 }JSR $B3ED| CALL INTCNV
20 DEFUSR1=&H3000 " |- - - - D = 0081

30 Y=USRI(X) — -

Fig. 8-5 An Subroutine Calling INTCNYV.

The pointer to a numeric variable can be passed to a subroutine. This
lets the subroutine work with the variable as it exists in the numeric
variable storage area. The BASIC program can pass the pointer to variable X
with the statement:

50 Y=USRI(VARPTR(X))
Subroutine 1 must get the pointer by using the INTCNV subroutine:
JSR $B3ED

This results in the pointer to variable X being in the D register. Now the
assembled subroutine can work with variable X as it exists in memory in
BASIC’s normal five-byte binary floating point format.

m Passing a String to a Subroutine
When a string is passed to a subroutine, the A register contains a
non-zero value to indicate so. The X register will point to the string
descriptor, which is a five-byte description of the string. The format of
the string descriptor is: NN XX AA AA XX. NN is the number of characters in
the string and the AAAA field contains the pointer to the string. The XX
fields are used by BASIC and should not be changed. A demonstration of
passing a string to a subroutine can be seen in Fig. 8-6.

BASIC Program Assembled Subroutine 2

40 DEFUSR2=&H2800 $2800% - - - - - A not =0 and
50 X$="ABCD" - | 7 |----- X = Pointer to
60 Y$=USR2(X$) // ————— X$ String
—————————— Descriptor

Fig. 8-6 Passing a String to a Subroutine.



At line 50 the string X$ is simply defined. In this case that string,
ABCD, exists as part of statement 50 in the statement storage area. A
string will not be put in the string storage area at the top of available
RAM until it has been manipulated in some fashion. Therefore, subroutine 2
in Fig. 8-6 must be very careful when acting upon string X$ so as to not
disturb any other statements. If line 50 were changed to: 50 X$="AB"+"CD",
the X$ string would reside in the string storage area.

m Returning a Numeric Value to BASIC

A numeric value can be returned to a BASIC program from an assembled
subroutine in any of three ways. The three techniques are: returning a
value in the FAC, putting a new value in a numeric variable’s storage area,
and using the GIVABF ROM routine.

The first technique is to put the binary floating point representation
of the subroutine’s result into the FAC, the area to which the X register
points. The data format is as described previously. Then the RTS
instruction is executed to return to the BASIC program where the receiving
BASIC variable will take on that value. If FAC is not changed, the
receiving variable will take on the value of the variable passed to the
subroutine when the BASIC program resumes.

The second technique is used when the pointer to a numeric variable is
passed to a subroutine. The pointer tells the subroutine where the numeric
variable is located in the numeric variable storage area. Then the newly
calculated value can be put into memory at that address using BASIC’s
normal five-byte binary floating point format. Upon returning to the BASIC
program via an RTS instruction, the variable whose pointer was passed will
be the value generated by the subroutine and the receiving variable will
take on the value of the pointer. For example:

10 DEFUSR 1=&H2800

20 Y=6544; X= -12

30 X=USR1(VARPTR(Y))
40 PRINT X,Y

At line 40 X equals the value of the pointer to Y, and Y equals the value
that subroutine 1 put into memory.

The third method is for the subroutine to jump to GIVABF, a ROM
resident program at address $B4F4. GIVABF takes the contents of the D
register in signed binary and returns that integer value to the receiving
variable. The range of values is limited to -32768 - +32767 decimal. This
return technique can also be used when a string has been passed to a
subroutine which is to return a numeric value. An RTS instruction is not
needed because the GIVABF program performs that function. This technique is
demonstrated in Fig. 8-7. At line 40 the variable K equals decimal 23, the
equivalent of $0017 that was put into the D register by subroutine 3.



BASIC Program Assembled Subroutine 3

20 DEFUSR 3=&H2900 $2900 [ -----
30 K=USR3(Y) |

AOPRINTK ¢é—| |- ----
————— \ LDD #$0017

————— JMP $B4F4

Fig. 8-7 Returning An Integer Value Using GIVABF.

® Returning a String to BASIC
An subroutine can return a string to be assigned to a BASIC string
variable. First, the BASIC program should establish a string area for the
return string variable, and that area must be large enough for the largest
string the subroutine may return. This can be done with the STRING$
command:
R$=STRINGS(xxx," ")

This statement establishes a string made up of xxx spaces that a subroutine
can fill with its return string. The subroutine is then called with the
statement: R$=USR4(R$), which passes the null string, RS, to the
subroutine. Upon returning, R$ equals whatever the subroutine has placed in
that string area. This process can also be done in one statement:

R$=USR4(STRINGS$(xxx," "))

The receiving string is set equal to the passed string after it has been
modified by the assembled subroutine.

One must take care to never lengthen a BASIC string with a
subroutine, for that will cause that string to overlay some other string in
memory. Remember that the BASIC strings are packed together in the string
storage area at the top of available RAM.

Presented in Listing 8-4 is the source code of a subroutine that will
fill or modify a BASIC string by using the string descriptor to tell it
where the string is in memory. It will then shorten the string length to
reflect its new contents by modifying the length code within the string
descriptor.

The source code should be assembled with the command: A/IM/WE/AO,
resulting in the object code in.memory at address $3000. Verify that no
errors were detected during assembling. Then go to BASIC by the Q command.
Enter the BASIC program in Listing 8-5. This BASIC program calls the
assembled subroutine and prints the returned string RS.



100 *THIS SUBROUTINE WILL FILL A BLANK STRING WITH
110 *THE WORDS MANY STRING WILL DOM AND SET THE
120 *LENGTH DESCRIPTOR TG 19, THE NUMBER OF

130 *CHARACTERS IN THE STRING.
140 Fekdkdddokdoddddkdok ik kkdodkkdhk ok kkkkkh ko dok kkkkkdok

150 ORG $3000

160 STR LDY 2,X GET ADDR OF STRNG
170 LDU #STEXT GET TEXT ADDR

180 LDA #19 COUNT VALUE

190 sT1 LDB ,U+ GET NEXT TEXT CHAR
200 STB ,Y+ PUT IN STRING

210 DECA DEC COUNT

220 BNE ST1 DO AGAN IF NOT DONE
230 LDA #19 STRNG LENGTH

240 STA ,X PUT IN DESCRIPTOR
250 RTS RETURN TO BASIC

260 Fhkddkkkhkkkkkkkkdhhhkhhhhhkhhihhkkhhrdrhdhrhhkriik

270 STEXT = FCC /ANY STRING WILL DO/
280 END

Listing 8-4 A Subroutine to Fill a String.

5 CLEAR 200,&H2F00
10 DEFUSRO=&H3000

20 R$=USRO(STRINGS(50," "))
30 PRINT R$

40 END

Listing 8-5 A BASIC Program Calling a Subroutine.

The technique of assembling programs directly into memory not used by
BASIC is quite helpful when testing and debugging programs and subroutines.
In this fashion one can quickly and easily put a program into memory for
immediate testing. However, when going from EDTASM+ to BASIC the source
code will be lost, and on the reverse path the BASIC program will be lost.

SUBROUTINES IN BASIC ROM

The Extended Color BASIC system in ROM is composed of many
subroutines. They can be used by assembly language programs if the
programmer knows their operating details such as their starting address,
how to pass parameters to them, and what functions they perform. Presented
in this section are a limited number of ROM subroutines that deal with
input and output, or I/O. Inputting is the transferring data from a
device external to the MPU and memory, such as the keyboard, or tape
recorder, into memory or an MPU register. Outputting is transferring data
from memory or an MPU register to an external device. There are many more
subroutines in BASIC ROM that serve useful purposes, such as generating
graphics displays, converting binary floating point to decimal, and vice
versa. You can use ZBUG to look through ROM to try to locate them and also
to find out how to use them.



The ROM subroutines are convenient since they already exist and do not

use much RAM because they reside in ROM. However, the subroutines do not
save the MPU registers they use. This can be remedied by constructing a
subroutine that stores the required registers, calls the ROM subroutine,
and then restores the registers before returning to the calling program.
This technique will be demonstrated for each of the ROM subroutines
presented if necessary. The subroutines are presented in related groups.
Those that deal with cassette I/O are presented in the Cassette section,
for example.

Display and Print Subroutines

Three ROM subroutines are presented here: CLSCRN, CHROUT, and
DISPL. They all control the text screen. The CHROUT subroutine can also
output data through the serial I/O, or RS-232, port, to which a printer
is normally connected but other devices, such as a modem which accepts
serial data, can be connected to it. Serial data transmission is a
technique of transferring binary data from one electronic device to
another. A byte is transmitted serially by sequentially sending out on a
wire the state of each bit of that byte. First, the LSB of a byte is sent
out, then the more significant bits are sent in the following order; 0, 1,

2, 3,4, 5,6, and 7 last. This process repeats for the next byte to be
sent out.

Computers with Color BASIC 1.0 send out only seven bits of each byte,
bits 0 - 6, so only the 128 ASCII codes may be transmitted. Color BASIC 1.1
and beyond send out all eight bits, so any value in a byte may be
transmitted. This can be determined for your computer by entering the BASIC
command: EXEC 41175. This causes the Color BASIC descriptive header to be
displayed, and you can see which version you have. The rate at which bits
are transmitted is called baud. A baud of 600 bits per second will
transmit about 75 bytes per second.

m CLSCRN :

Function: Clear the text screen and set the display pointer to the first
display position. '

Address: $A928 S Stack Use: None
Registers Modified: B, X, and CC

Pass Arguments: None

Return Values: Display pointer set to $0400.

The CLSCRN subroutine clears the text screen and sets the display
pointer to $0400. The display pointer is the content of addresses $88
and $89, which points to the display position on the screen at which the
next character will be displayed. The value of the display pointer can
range from $0400 - $O5FF, the addresses of the text display buffer.
BASIC’s CLS command is similar to CLSCRN; the screen is cleared and the



next text displayed with the PRINT command starts at the top left corner of
the screen.

The CLSCRN subroutine does not preserve the B, X, and CC registers.
Listing 8-6 is a subroutine to use with an assembly language program that
preserves the registers and calls CLSCRN.

5000 *SUBROUTINE NAME: CLS

5010 *THIS SUBROUTINE WILL CLEAR THE TEXT SCREEN
5020 *AND RESET THE DISPLAY POINTER.. 6 BYTES OF
5030 *THE S STACK ARE USED.

5040 *dkdddhimkkiohkhnkdrihdokiihiiikhihkikdhikkkiki

5050 cLs PSHS B,X,CC SAVE REGS

5060 JSR $A928 CALL CLSCRN
5070 PULS B,X,CC RESTORE REGS
5080 RTS RETURN

R0QQ **kkkkkkkhkkhkhkkhhkhhhhhkhkhhhhhkhrhhrhRhhkdkhikk ik

Listing 8-6 The CLS Subroutine.

The CLS subroutine uses six bytes of the S stack; four for storing the
B, X, and CC registers, and two for storing PC when CLSCRN is called. This
does not include the two bytes used to store PC when this subroutine, CLS,
is called.

® CHROUT
Function: CHROUT will output a character, specified by its ASCII code in
the A register, to the text screen or out the serial I/O port.
Address: [$A002] S Stack Use: 8 bytes
Registers Modified: CC
Pass Parameters: The DP register must contain a 00. The contents of the A
register is outputted. The contents of address $6F specifies output device.
$6F = 00; output to the screen.
$6F = FE; output through serial I/O port.
Return Values: If $6F = 00, the display pointer is incremented.

The starting address of CHROUT is contained in addresses $A002 and
$A003; it can be called by using extended indirect addressing.

JSR [$A002] or  JSR $A282

One can inspect the contents of $A002 and $A003 with ZBUG in the word
display mode to find the absolute starting address. That address is
normally $A282, so CHROUT can also be called with extended addressing. This
results in a slightly faster execution speed since a jump with extended
addressing is faster than with indirect addressing. If one wants the CC
register preserved, CHROUT should be called from within a subroutine that
will save and then restore the CC register.

If location $6F contains a 00, CHROUT will display a character whose



ASCII code is in the A register on the text screen at the position
specified by the display pointer. Each time a character is displayed, the
display pointer is incremented by one. When the display pointer is
incremented past $5FF, CHROUT will scroll all the text on the screen up one
line.

Listing 8-7 is a subroutine that displays a character on the text
screen. It would be used in a situation where the calling program generates
the characters one at a time. Note that line 5190 can be changed to
extended addressing by using the starting address contained within $A002

and $A003.
5100 *SUBROUTINE NAME: ACHRO
5110 *THIS SUBROUTINE WILL DISPLAY THE CHARACTER
5120 *WHOSE ASCII CODE IS IN THE A REGISTER AT THE
5130 *POSITION SPECIFIED BY THE DISPLAY POINTER.
5140 *THEN THE DISPLAY POINTER IS INCREMENTED.
5150 *13 BYTES OF STACK AREA ARE REQUIRED.
5160 dkkkkkkhkkikkhkkhhkkhkkkkkkkkkkkkkikkikhkkkikkdkik

5170 ACHRO  PSHS cC,B,DP SAVE REGS

5180 CLRB GET .00

5190 TFR B,DP CLEAR DP REG
5200 CLR $006F OUTPUT TO SCREEN
5210 JSR [$A002] CALL CHROUT
5220 PULS CC,B,DP RESTORE REGS
5230 RTS RETURN

5240 Fekkkkdokkkhikhhkkdkkkkiokkdkkhkkkidkkkkkdokkdkdkhkk

Listing 8-7 The ACHRO Subroutine.

If location $6F contains $FE, the contents of A will be sent out the
serial I/O port at the baud specified by the contents of addresses $95 and
$96. The baud can be set to the desired rate by putting the selected value
from Table 8-1 into locations $95 and $96 before calling CHROUT. BASIC and
EDTASM-+ initially set the baud to 600 bits per second. It is the
programmer’s responsibility to set the baud to match the rate at which the
device accepts data.

Baud Hex. Value
120 01CA
300 00BE
600 0057

1200 0029
2400 0012
4800 0006
9600 0001

Table 8§-1 Baud Control Values.

If a printer is connected to the serial I/O port, it will print the



character whose ASCII code is sent out. Other devices will interpret the
byte sent according to their design.

Listing 8-8 is a subroutine that preserves the CC register and calls
CHROUT to output a byte on the serial I/O port.

5300 *SUBROUTINE NAME: BCHRO

5310 *THIS SUBROUTINE WILL OUTPUT THE CONTENTS
5320 *OF A TO A DEVICE ON THE SERIAL PORT. THE
5330 *BAUD RATE SHOULD HAVE BEEN PREVIOUSLY
5340 *DETERMINED. 13 BYTES OF STACK ARE USED.
B350 dkdkddkdkdkkhiokihiohkkhhihkhhiidrkhkikhiokkhhk

5360 BCHRO  PSHS cc,B,DP SAVE REGS

5370 CLRB GET 00

5380 TFR B,DP CLEAR DP REG
5390 LDB #S$FE SERIAL OUTPUT
5400 STB $006F PASS PARAM
5410 JSR [$A0021 CALL CHROUT
5420 PULS CC,B,DP RESTORE REGS
5430 RTS RETURN

5440 KhkkdhikihhARARRhhddkhdkkddkdddhrrrkhkkdkiik

Listing 8-8 The BCHRO Subroutine.

e DISPL

Function: DISPL displays a string of characters on the text screen,
starting at the position specified by the display pointer.

Address: $B99C S Stack Use: 10 bytes

Registers Modified: A, B, X, U, and CC.

Pass Parameters: The DP register must contain 00. The X register points to
the string to be displayed. The display pointer specifies starting display
position.

Return Values: The display pointer is incremented.

The DISPL subroutine displays a string of characters on the text
screen, starting at the position specified by the display pointer. The
string to be displayed must exist in memory as a string of ASCII codes. The
X register must be loaded with the starting address minus one, of the
string to be displayed. DISPL does not display the first character that X
points to, but just those thereafter. This is because this subroutine is
used by BASIC to print strings; each string exists between a pair of
quotation marks. When a string is printed by BASIC, the opening quotation
mark is not printed. The characters that can be displayed are all the
displayable text characters plus the graphics characters, except the
quotation mark. The end of a string is identified by a quotation mark: an
ASCII code of $22. Upon encountering a quotation mark, DISPL stops-
displaying characters and returns to the calling program. Thus, quotation
marks can not be displayed. A byte in the string, of the value $0D, causes
DISPL to perform a carriage return and a line feed (CR/LF). The next
display position will be at the beginning of the next line. As DISPL is



displaying a string, the display pointer is incremented by one for each
character displayed. After performing a carriage return and line feed, the
display pointer points to the first position of the next line. If the
display pointer is incremented beyond a value of $5FF, the text on the
screen is scrolled up one line to make room for the next line of text.
Listing 8-9 is a subroutine that can be used with assembly language
programs, since it preserves all the registers. It will decrement X by one
before calling DISPL. Thus, X can point directly to the first character of
the string when calling the DSPLAY subroutine.

5500 *SUBROUTINE NAME: DSPLAY

5510 *THIS SUBROUTINE WILL DISPLAY THE TEXT

5520 *STRING THAT THE X REGISTER .POINTS TO

5530 *STARTING AT THE POSITION SPECIFIED BY

5540 *THE DISPLAY POINTER. A CODE OF 0D WILL

5550 *CAUSE A CR/LF. A CODE OF 22 (") INDICATES
5560 *THE END OF THE STRING TO DISPLAY. 20

5570 -*BYTES OF STACK AREA ARE REQUIRED.

G5O *kkkkddkkdkkiiihkkiohhkihkhkkkioiohkkiokk koo

5590 DSPLAY PSHS D,X,U,CC,DP SAVE REGS

5600 CLRB GET 00

5610 TFR B,DP CLEAR DP REG
5620 LEAX -1,X ADJUST POINTER
5630 JSR $B99C CALL DISPL
5640 PULS D,X,U,CC,DP RESTORE REGS
5650 RTS RETURN

5660 dedekdekdokkkkkkkkhkkdhkkkkkhkhikkhkhkdhkkhkhhikkx

Listing 8-9 The DSPLAY Subroutine.

Reading The Keyboard

Interrogating the keyboard to determine if or what key has been
depressed is often done by programs. Fortunately, there is a subroutine in
BASIC ROM that performs this function. It is called POLCAT.

m POLCAT

Function: Interrogate the keyboard to see what key is being depressed, if
any.

Address: [$A000] S Stack Use: 12 bytes
Registers Modified: A and CC.

Pass Parameters: None.

Return Values: If a key is depressed Z bit = 0, and A register contains
its ASCII code. If no key is depressed Z bit = 1, and the A register
contains 00.

The POLCAT subroutine samples the keyboard and returns the ASCII code
of a character in A if a key was depressed. It also indicates whether a key
was depressed with the Z bit of the CC register. The starting address of
POLCAT is contained in locations $A000 and $A001. Thus, POLCAT can be



called using extended indirect addressing.
JSR [$A000] or JSR - $A1C1

Or the absolute address (§A1C1 in Color BASIC 1.0 or 1.1) of POLCAT can be
found and extended addressing used.

The A and CC registers are modified by this subroutine. Since the
return values are returned in A and CC, they do not have to be saved and
restored. Therefore, a subroutine does not have to be constructed to save
and restore any registers. POLCAT will require 12 bytes of stack area for
its own use plus two more in which to store PC when it is called.

Listing 8-10 uses the POLCAT, CLS, ACHRO, and DSPLAY subroutines. It
clears the screen and displays the string:t ENTER A DECIMAL NUMBER. Then
it polls the keyboard and accepts only the digits 0 - 9, which it displays.

When the ENTER key is hit, it causes the program to return to ZBUG.

100 *PROGRAM NAME: ADEMO

110 *THIS PROGRAM WILL DEMONSTRATE THE USE OF THE
120 *CLS, ACHRO, DSPLAY, AND POLCAT SUBROUTINES.
130 *IT WILL ESTABLISH ITS OWN STACK OF 22 BYTES.

140 Fkkkhkkkdkkikkkkikkkkkkkhkhkkikkkkkhkhhikdhkhhkkkkhhhhkk

150 ORG $2500

160 ADEMO  STS ADOS SAVE 2BUG S REG
170 LDS #22+ADST ESTABLISH STACK
180 JSR CLS CLEAR SCREEN

190 LDX #ADTEXT GET TEXT POINTER
200 JSR DSPLAY DISPLAY TEXT STRING
210 AD1 JSR [$A000] POLL KEYBOARD

220 BEQ AD1 DO AGAIN IF NO KEY
230 CMPA #3$0D ENTER KEY?

240 BEQ AD2 IF S0,GOTO END

250 CMPA #330 LESS THAN O KEY
260 BLO AD1 GET NEW KEY

270 CMPA #339 GREATER THAN 9 KEY
280 BHI AD1 GET NEW KEY

290 JSR ACHRO DISPLAY CHARACTER
300 BRA AD1 GET NEXT CHARACTER
310 AD2 LDS ADOS RESTORE ZBUG § REG
320 SWI RETURN TO ZBUG

330 KRKAKRKKKKKIAKRREKRRAKKRKRKIAERAKRK KK hhkddkkkkhkhhk

340 ADOS RMB 2

350 ADST RMB 22

360 ADTEXT FCC /ENTER A DECIMAL NUMBER "/

370 Rk kR kAo Rk kR Rk ko ek ok
5000 *SUBROUTINE NAME: CLS

5010 *THIS SUBROUTINE WILL CLEAR THE TEXT SCREEN
5020 *AND RESET -THE DISPLAY POINTER. .6 BYTES OF
5030 *THE S STACK ARE USED.

5040 FFkwkdddokskhokhkkkkdkdiokdokdkkddkok ok kdoiokdokokoiorikkkok

5050 CLS PSHS B,X,CC SAVE REGS

5060 JSR $A928 CALL CLSCRN
5070 PULS B,X,CC RESTORE REGS
5080 RTS RETURN

EOQD Fhkikkkkkskihihkhddddokdohk kiR Rk khddohdkkdoiokkok ik
5100 *SUBROUTINE NAME: ACHRO



2170 *THIS SUBROUTINE WILL DISPLAY THE CHARACTER
5120 *WHOSE ASCII CODE IS IN THE A REGISTER AT THE
5130 *POSITION SPECIFIED BY THE DISPLAY POINTER.
5140 *THEN THE DISPLAY POINTER IN INCREMENTED.

5150 *13 BYTES OF STACK AREA ARE REQUIRED.

5160 Fdkdskdokkdkiokdokkkk ik kioh ik kkkokdokdkkkkd ko doiok

5170 ACHRO  PSHS cC,B,DP SAVE REGS

5180 CLRB GET 00

5190 TFR B,DP CLEAR DP REG
5200 CLR $006F OUTPUT TO SCREEN
5210 “JSR [$A0C2] CALL CHROUT

5220 PULS cC,B,DP RESTORE REGS
5230 RTS RETURN

5240 Knkkkkkhkkkkkihkkhhhkkhkkhkrhikkhhkhkdhhhhkhkhkkk

5500 *SUBROUTINE NAME: DSPLAY

5510 *THIS SUBROUTINE WILL DISPLAY THE TEXT

5520 *STRING THAT THE X REGISTER POINTS TO

5530 *STARTING AT THE POSITION SPECIFIED BY

5540 *THE DISPLAY POINTER. A CODE OF 0D WILL

5550 *CAUSE A CR/LF. A CODE OF 22 (M) INDICATES

5560 *THE END OF THE STRING TO DISPLAY. 20

5570 *BYTES OF STACK AREA ARE REQUIRED.

5580 *dekiikkiodkkidkdnhhikhkhkkdok ko kkkkikdkkkdkkik

5500 DSPLAY PSHS D,X,U,CC,DP SAVE REGS

5600 CLRB GET 00

5610 TFR B,DP CLEAR DP REG

5620 LEAX -1,X ADJUST POINTER

5630 JSR $BY9C CALL DISPL

5640 PULS D,X,U,CC,DP RESTORE REGS

5650 RTS RETURN

5660 RkhkhRhhhkkkhkkkhkkhkhkkkikhhkkhkkkhkhkkhkkkhkhkkhkhkhrhkhid
5670 END

Listing 8-10 The ADEMO Program.

The stack area is set to 22 bytes; 20 for DSPLAY plus 2 for storing PC when
DSPLAY is called. Assemble the source code into memory with the command:
A/IM/WE/AQO and verify there are no errors. Then go to ZBUG and run the
program by entering: GADEMO. Notice that only decimal numbers are accepted
from the keyboard and displayed.

Reading The Joysticks

Two joysticks can be connected to the Color Computer and their
positions read with the JOYIN ROM subroutine. It is also possible tc
connect other devices to the joystick ports as long as they are
electronically compatible with the Color Computer. JOYIN can then be used
to read the values originating at those devices.

There is no ROM subroutine to read the state of a joystick fire button.
The state of a joystick fire button can be read by reading the contents of
address $FF00, a dedicated address. A dedicated address is neither RAM
nor ROM, but is connected to some electronic device. The fire buttons are
connected to bits 0 and 1 of address $FF00. Bit 0 reflects the state of the
right fire button and bit 1 reflects the state of the left fire button. If
the fire button is depressed, the bit is clear; otherwise it is set.



r JOYIN
Function: This subroutine reads the position of both joysticks and returns
their positions as numeric values in specific memory locations.
Address: [SA00A] S Stack Use: 6 bytes
Registers Modified: A,B,X,U,CC.
Pass Parameters: None.
Return Values: In four memory locations, $15A through $15D.
Right joystick: $015A = left/right position value.
$015B = up/down position value.
Left joystick: $015C = left/right position value.
$015D = up/down position value.
A value of 00 indicates all the way up or left, and a value of $3F
indicates all the way down or right.

The starting address of JOYIN is contained in addresses $AQO0A and
$AOQ0B. Therefore, it can be called using extended indirect addressing.

JSR [FA00A] or JSR $A9DE

If the contents of $A00A and $A00B are displayed, the absolute address
(typically $A9DE) can be found and extended addressing can be used when
calling it.

Upon returning from JOYIN, values indicating the joystick positions
will be in memory. For example, if the left joystick was centered, then
$15C and $15D would each contain $1F (a value half-way between 00 and $3F).
If the right joystick was positioned to the extreme upper right, location
$15A would contain $3F-and $15B would contain 00.

The JOYIN subroutine modifies the A, B, X, U, and CC registers, thus, a
subroutine should be constructed that saves these registers, calls JOYIN,
and then restores the same registers. Such a subroutine (JOY) is in Listing
&-11.

Listing 8-11 is a program that demonstrates using the JOY subroutine.
It will display a cursor on a clear screen that moves as the left joystick
is moved throughout its range. When the joystick is centered, the cursor is
displayed in the center of the screen. This program can be used to test the
joysticks for proper operation; however, the fire button is not tested. The
JDEMO program can be made to use the right joystick by changing lines 220
and 270 to the following:

220 LDB $015B
270 LDB $015A

Assemble the JDEMO program with the A/IM/WE/AQO command and verify
there are no errors. Then go to ZBUG and run it by entering: GIDEMO. The
cursor on the screen will now move as the joystick is moved.




100 *PROGRAM NAME: JDEMO
110 *THIS PROGRAM WILL POSITION A CURSOR ON THE
120 *SCREEN TO MATCH THE PHYSICAL POSITION OF

130 *THE LEFT JOYSTICK.
140 *rkdckdkddkkokdickkkk ik kkkkkkkkkkdk ik k koo

150 ORG $2500

160 JDEMO  LDS #17+JDSTCK ESTABLISH STACK
170 JSR $A928 CLEAR THE SCREEN
180 LDX #$04E0 CENTER OF SCREEN
190 JD1 TFR X,U STORE POINTER

200 LDY #$0400 START OF SCREEN
210 JSR JOY GET JSTICK VALUES
220 LDB $015D GET VERTICAL POSITION
230 LDA #3%08 SHIFT VALUE

240 - MUL SHIFT

250 ANDB #3EQ CALC :VERT OFFSET
260 LEAY D,Y STORE VERT OFFSET
270 LDB $015C GET HORIZ POSITION
280 LDA #3580 SHIFT VALUE

290 MUL SHIFT

300 TFR A,B PUT .IN LOWER D REG
310 CLRA CLEAR UPPER D

320 LEAY D,Y STORE HORIZ OFFSET
330 TFR Y,X SAVE NEW POSITION
340 LDA #3$60 SPACE CODE

350 STA ,U DISPLAY IT

360 LDA #128 CURSOR CODE

370 STA X DISPLAY IT

380 BRA JD1 DO AGAIN

T R L
400 JDSTCK RMB 17 STACK AREA

410 L T s e L s xR e e s

5700 *SUBROUTINE: NAME: .JOY

5710 *THIS SUBROUTINE WILL RETURN THE LEFT AND
5720 *RIGHT JOYSTICK POSITIONS. IT CALLS JOYIN
5730 *IN ROM. 15 BYTES OF STACK AREA ARE REQUIRED.
5740 *ikdddddiohihkkiiionikkiokkioioosokiokokkkiotok ko

5750 JOY PSHS D,X,U,CC  SAVE REGS

5760 JSR - T3A00A] ~ 'CALL JOYIN

5770 PULS D,X,U,CC  RESTORE REGS

5780 RTS RETURN

5790 dedkkkkkkkkdkkkikhkkkkkkhkhkhhihkkkkhkkhkrdkhkhkhkhkkk
5800 END

Listing 8-11 The JDEMO Program.

Cassette Tape 1/0

Four subroutines in BASIC ROM are used to write and read data to and
from tape. They are WRTLDR (write leader), BLKOUT (write block out),
CSRDON (start to read), and BLKIN (read block in). First let’s make sure
you understand the conventions established for tape I/O.

Data is recorded on tape in a series of blocks or groups of bytes along
the length of the tape. Extended Color BASIC and EDTASM+ use common
conventions to determine the format of the blocks as they are recorded on
tape. The same conventions can be used to read data from tape. A group of
blocks on tape comprises a file, and all the blocks contain the



information in that file. A typical tape file is shown in Fig. 8-8.

blank | leader | header blank | leader | data data EOF
space block space block block block

Fig. 8-8 A BASIC Cassette Tape File.

The file is written and read from left to right; the leader is
encountered first. The leader is used when reading the tape. It
synchronizes the cassette tape read electronics and the subroutine to read
the following block. The leader is a series of 128 bytes whose value is
$55. Immediately following the leader is the header, or name, block which
describes the file. Within the header is information such as the file name;
whether it is a BASIC program, data, or object code file; and where to load
into memory. Following the header is a space in which nothing is recorded.
This blank area serves as a time delay of about one-half second, giving
BASIC time to evaluate the header block before the data blocks arrive.

Before the data blocks are read there is a another leader to get the
read logic in sync. The data blocks contain file data, such as a BASIC
program, object code, or data for a table or array. The last block is the
end-of-file (EOF) block.

Each type of block has a specific internal structure. The three types
are the header, data, and EOF blocks. The following descriptions of the

blocks give the particular conventions used by BASIC and EDTASM+. One may

choose to use different formatting conventions when writing tape files with

assembly language programs, but only you and whoever knows your conventions

will be able to read them.
The header block is the most complicated because it is composed of the
largest number of fields. The header block format can be seen in Fig. 8-9.

ML
file EXEC
fixed length type  gaps addr fixed

{
0 1 23¢45 6 7 8 9 101112 13 14 151617 18 19 20

[55 3C 00 OF xx xx xx xx xx xx xx xx TT DD GG SS SS BB BB CC 55 |

A N - ~~ 1
block | file name data ML check-
type type load sum

addr ]

< to/from 15-byte buffer ——————— |

Fig. 8-9 Header Block Format.



The bytes of a header block are described as follows:
0,1 - Always written as $55 $3C by subroutine that creates a block.
2 - Block type. 00 indicates a header block.
3 - Length code. Always set to 15 ($0F) for a header block.
4-18 - Data bytes. This data comes from a 15-byte buffer when the header
block is written. When read, data goes into a 15-byte buffer.
4-11 - The file name.
12 - File type: 00=BASIC program file, 01=data file, 02=object
code file.
13 - Data type: 00=binary. FF=ASCII (as with a CSAVE "xxx",A).
14 - Gaps between data blocks indicator. 00=no gaps (as in Fig.
8-8). FF=yes gaps (as in Fig. 8-12).
15,16 - Address at which to load an object code file.
17,18 - Address at which to start executing object code.
19 - Checksum byte. It contains the binary sum of the contents of bytes
2 - 18, with all carries from bit 7 ignored. It is used to verify
that data read in is correct.
20 - Always $55.

check-
fixed length sum
o1 2 3.4 5 -6 7 N-2 N-1 N
55 3¢ 01 LL DD DD DD DD . . . . DD CC 55}
T
block fixed
type «———— data from/to ————>
buffer

Fig. 8-10 Data Block Format.

The bytes in a data block, shown in Fig. 8-10, are described as
follows:

0,1 - Always written as $55 $3C by subroutine that creates a block.

2 - Block type: 01 = data block.

3 - Number of bytes of data in this block (00 - FF).

4-(N-2) - Data in the data block. This data comes from a buffer when
the block is written. Upon reading, the data is read into a
buffer area. ‘

N-1 - Checksum byte containing the binary sum of bytes 2 through (N-2).
Used to verify that the block was read correctly.

N - Always $55.



fixed length fixed
¥

01 2 3 4 5

[ 55 3C FF 00 CC 55|

4 U
block check-
type sum

Fig. 8-11 EOF Block Format.

The bytes of an EQOF block, shown in Fig. 8-11, are described below.
Notice that an EOF block contains no data bytes.
0,1 - Always written as $55 $3C by subroutine that creates a block.
2 - Block type; FF indicates an EOF block.
3 - Length code. Must be 00 for an EOF block.
4 - Checksum byte containing the binary sum of bytes 2 and 3. Used to
verify that this block was read correctly.
5 - Always $55.

The two ROM subroutines WRTLDR and BLKOUT are used to write a tape
file. WRTLDR turns on the cassette motor and writes a blank space followed
by a leader. Then BLKOUT should be immediately used to write the following
block. CSRDON and BLKIN read a tape file. CSRDON turns on the cassette
motor and gets the read circuits and subroutine in sync while passing over
the leader. BLKIN is used when the cassette is at speed and in sync to read
a header, data, or EOF block.

It is up to the operator to place the cassette recorder. in its proper
condition before reading or writing. Remember that a cassette recorder
erases old data when it records new data. Leave 5 to 10 seconds of blank
playing time between files; this will make it much easier to position the
tape to read a file.

Turning the cassette motor off is done with a dedicated address. Bit 3
of address $FF21 controls the cassette motor. Setting that bit turns the
motor on and clearing it turns the motor off. Be careful not to affect any
other bits since they control other operations in the computer. Bit 3 can
be cleared with the following three instructions:

LDA $FF21
ANDA #$F7
STA $FF21

without disturbing the other bits in $FF21.

The cassette motor needs to be turned off when the EOF block has been
written, or when a data or header block has been written and it will be
some time before the next data block will be written. This would happen in



a program that generates data to be recorded at a slow rate. After stopping
the tape and accumulating a full data buffer, the next block is written by
writing a leader and then the data block. This is done because the cassette
read logic goes out of sync when the tape stops. A file created by this
process contains gaps between the data blocks as seen in Fig. 8-12.

blank | leader | header | blank | leader | data | blank | leader | data
space block block block

Fig. 8-12 A Tape File with Gaps.

Tape files created with BASIC’s CSAVE "xxx",A command and EDTASM+'s
assemble onto tape (A) and write source code to tape (W) commands are
written with gaps. Tape files created with BASIC’s CSAVE "xxx" and CSAVEM
commands and EDTASM+'s write memory to tape (P) command are written
without gaps.

m WRTLDR
Function: Turn on cassette motor and write a gap and leader.
Address: [$A00C] S Stack Use: 4 bytes

Registers Modified: A,B,X,Y,CC.
Pass Parameters: The DP register must contain 00.
Return Values: None.

WRTLDR turns on the cassette motor, writes a blank space, and writes a
leader. When it returns the program must be ready to write a block.

Since WRTLDR preserves only the U and S registers, it should be called
from a subroutine that saves the other registers. One should ensure the DP
register is clear before calling WRTLDR or it will not work (see Listing
8-12).

5800 *SUBROUTINE NAME: WLDR

5810 *THIS WILL TURN ON THE CASSETTE MOTOR AND
5820 *WRITE A GAP AND LEADER. 14 BYTES OF STACK
5830 *AREA ARE REQUIRED.

5840 deddededdededododedokokk ok ok kkkdokdkkkkddohkdkkkkkhkkkkk

5850 WLDR ‘PSHS D,X,Y,DP,CC SAVE REGS

5860 CLRB GET 00

5870 TER B,DP CLEAR DP REG
5880 JSR  [$A00C] CALL WRTLDR
5890 PULS D,X,Y,DP,CC RESTORE REGS
5900 RTS RETURN

52910 kkkkkikkkkkhhdikkkkhkkkhkkkkhkkhkhhkkikkkkkkk

Listing 8-12 The WLDR Subroutine.



x BLKOUT
Function: It writes a header, data, or EOF block on tape, specified by the
pass parameters.
Address: [$A008] S Stack Use: 10 bytes
Registers Modified: A,B,X,Y,CC.
Pass Parameters: The cassette must be at speed and have completed writing
a leader or block. The DP register must contain 00. The controlling
parameters are passed in the following memory locations:

$7C = block type to write; 00 = header, 01 = data, FF = EOF;

$7D = block buffer length; range from 00 to $FF;

$7E+$7F= starting address of buffer.
Return Values: The X register contains the sum of the buffer starting
address and the buffer length.

Before calling BLKOUT, the parameters should be put in addresses $7C
through $7F to tell it what type of block to write. The data to be written
should be in the buffer area. After writing an EOF block, the cassette
motor should be turned off. If it will be some time between data blocks
before there is more data to write, the motor should also be turned off. In
this case, another leader must be written before the next data block is
written. '

Presented in Listing 8-13 are two subroutines, WBLOK and MOTOFF.
WBLOK writes a block by calling BLKOUT. MOTOFF turns the cassette

motor off.
6000 *SUBROUTINE NAME: WBLOK
6010 *THIS WILL WRITE A HEADER, DATA, OR EOF BLOCK
6020 *ON CASSETTE TAPE. ADDRESSES 7C=BLOCK TYPE;
6030 *7D=BUFFER LENGTH; 7E+7F=BUFFER ADDRESS.
6040 *20 BYTES OF STACK AREA ARE REQUIRED.
6050 *********************************************

6060 WBLOK  PSHS D,X,Y,DP,CC SAVE REGS

6070 CLRB GET 00

6080 TFR B,DP CLEAR DP REG
6090 JSR  [$A008] CALL BLKouT
6100 PULS D,X,Y,DP,CC RESTORE REGS
6110 RTS RETURN

6120 Kekddikkkkhhkkkkkkkkikhkhkhkihkkhkhkhhhkhhkhkkkikhikir

6200 *SUBROUTINE NAME: MOTOFF
6210 *THIS SUBROUTINE WILL TURN OFF THE CASSETTE

6220 *MOTOR. TWO BYTES OF STACK AREA ARE USED.
6230 Fhkkkkikdkkdokdkokkdkkkkok kR kR kIR kR R AR ARk kR kR

6240 MOTOFF PSHS A,CC SAVE REGS

6250 LDA $FF21 GET CONTROL BYTE
6260 ANDA #3F7 CLEAR BIT 3

6270 STA $FF21 STORE CONTRL BYTE
6280 PULS-A,CC RESTORE REGS
6290 RTS RETURN

6300 Fkkkkkkkhhkkkdhkhkhikdhkkkikhhhidhkkidhdhdrkdikrir

Listing 8-13 The WBLOK and MOTOFF Subroutines.



 CSRDON

Function: Turns on cassette motor and gets cassette in sync for reading by
reading the leader.

Address: [$A004] S Stack Use: 6 bytes
Registers Modified: A,B,X,CC.

Pass Parameters: The DP register must contain 00.

Return Values: None.

CSRDON turns on the cassette motor and searches for a leader. Reading
the leader gets the read electronics and program in sync to read the block
that follows. CSRDON should be used when starting to read a file and when
about to read a data block, if the cassette motor is off. Listing 8-14 is a
subroutine that preserves the registers and calls CSRDON,

6400 *SUBROUTINE NAME: RLDR

6410 *THIS WILL TURN ON THE CASSETTE MOTOR AND
6420 *USE THE LEADER TO GET IN SYNC FOR READING
6430 *THE FOLLOWING BLOCK. 14 BYTES OF STACK
6440 *AREA ARE USED.

BLS0 Fkwkkddddkdkddkdededddddedoddd ks ok ko kR ok kokk

6460 RLDR PSHS D,X,CC,DP SAVE REGS

6470 CLRB GET-.00

6480 TFR B,DP CLEAR DP REG
6490 JSR [$A004] CALL CSRDON
6500 PULS D,X,CC,DP "RESTORE REGS
6510 RTS RETURN

6520 *kkkkkkkkkkkkhdkhhkhhkhikhhkhihihkihkhkikikikk

Listing 8-14 The RLDR Subroutine.

m BLKIN
Function: Reads a header, data, or EOF block from tape if the motor is on
and the cassette in sync.
Address: [$A006] S Stack Use: 8 bytes
Registers Modified: A,B,X,CC.
Pass Parameters: The DP register must contain OO The buffer starting
address must be put in-addresses $7E and $7F.
Return Values: The data is read from tape into the buffer. The block type
and length of the block read is returned in memory addresses $7C and $7D:
$7C = Block type: 00 = Header block, 01 = Data block, FF = EOF block.
$7D = Block length.
The completion status is returned in the CC and A reglsters
Z=1 and A=00: indicate a successful read.
Z=0 and A=01: indicate a checksum error (block was read incorrectly).
Z=0 and A=02: indicate a memory error (block read incorrectly due to
bad memory in read buffer area or buffer area extends
into ROM or dedicated address area).



Before BLKIN is called the cassette must be in sync and at speed. The
buffer starting address must also be in locations $7E and $7F. The program
should establish a buffer area large enough to hold the largest block
expected to be read. If you are unsure of the block size, set up a read
buffer area of 255 bytes, the largest block size possible.

Upon returning, BLKIN will return the block type code and block length
in address $7C and $7D. The read buffer area contains the data read from
tape. Also returned is the status: an indication of whether the block was
read successfully. A successful read is indicated by the Z bit of the CC
register being set. If it is set, the program can continue. If the Z bit is
clear, the program should display a message to tell the operater it read a
block incorrectly. A simple program at this point would have to be run over
again. A more sophisticated program would tell the operator to position the
tape to the beginning of the file for a second attempt to read the tape.

Listing 8-135 is a subroutine that preserves the registers (except A and
CC) and calls BLKIN. The status is returned in the A and CC registers.

6600 *SUBROUTINE NAME: RBLOK

6610 *THIS WILL READ A BLOCK IF THE CASSETTE IS
6620 *IN SYNC. 7E+7F=BUFFER ADDR. UPON RETURNING:
6630 *7D=BLOCK LENGTH, 7C=BLOCK TYPE, AND THE
6640 *A REG AND.Z BIT INDICATE READ STATUS.

6650 *14 BYTES OF STACK AREA ARE REQUIRED.

BO60 Fekddkddedkdeddkdddwdhddodk ik kikkkkk ok dokdkkdokkkk ik

6670 RBLOK  PSHS B,X,DP SAVE REGS

6680 CLRA GET 00

6690 TFR A,DP CLEAR DP REG
6700 JSR . [$A006] CALL BLKIN
6710 PULS B,X,DP RESTORE REGS
6720 RTS RETURN

6730 ke ok e ek e e e de e e ok ok e ok e o ok e s ke ke ok ok e e ok ok e ke ok ok e ke ke

Listing 8-15 The RBLOK Subroutine.

Listing 8-16 is a demonstration of writing a block to tape and then
reading it back. It consists of two programs; the first (BKOUT) writes the
contents of a 100-byte buffer on tape, and the second (RDBLK) reads the
block into a different buffer area.

100 *PROGRAM NAME: BKOUT
110 *THIS WILL FILL EACH BYTE OF A 100 BYTE
120 *BUFFER WI A NUMBER FROM .00 TO 63 HEX.

130 *THEN THAT BUFFER ‘1S RECORDED -ON TAPE.
40 Hhddkddksdokdodedodkkdokok ek sk ok ek ke st ded e dede de ok

150 ORG $2600

160 BKOUT .. STS BKOLD SAVE -ZBUG S REG
170 LDS #22+BKSTK  NEW STACK

180 CLRA CLEAR A

190 LDX #BKBUF GET BUF ADDR
200 BK1 STA X+ PUT -A IN BUFFER
210 INCA INC A REG

220 CMPA #364 DONE?




100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910

*PROGRAM NAME: BKQUT

*THIS WILL FILL EACH BYTE OF A 100 BYTE
*BUFFER WI A NUMBER FROM 00 TO 63 HEX.
*THEN THAT BUFFER IS RECORDED ON TAPE.

P E LR Rt e e P S et s R S

ORG $2600
BKOUT  STS BKOLD SAVE ZBUG S REG
LDS #22+BKSTK - -NEW STACK
CLRA CLEAR A
LDX #BKBUF GET BUF ADDR
BK1 STA X+ PUT A IN BUFFER
INCA INC A REG
CMPA #$64 DONE?
BLS BK1 IF NOT,DO AGAIN
JSR WLDR WRITE LEADER
LDA #301 BLOCK TYPE
STA $007C PASS IT
LDA #100 BLOCK LENGTH
STA $007D PASS 1T
LDX #BKBUF GET BUF ADDR
STX $007E PASS IT
JSR WBLOK WRITE BLOCK
JSR MOTOFF TURN MOTOR OFF
LDS BKOLD GET ZBUG S
SWI RETURN TO ZBUG

dhkkkkikkRkhkkhhkkhkhkkkhkkkkkkikhkhikkhhkhdkkikk

BKOLD . . RMB 2 ZBUG S STORAGE
BKBUF .. RMB 100 BUFFER AREA
BKSTK .. RMB .22 STACK AREA

KRk hREKREKRKREKK I AR TR ARIARI AR AR bk kThdhhhdkikd

*PROGRAM NAME: RDBLK
*THIS WILL READ THE PREVIOUSLY WRITTEN

*BLOCK INTO A DIFFERENT BUFFER.
Fekdedek Rk kkokRdkd ok kdok kK k kR Rk R ARk Kk ks dkok ok

RDBLK =~ 'STS.RDOLD SAVE ZBUG §
LDS #16+RDSTK . . NEW STACK
JSR RLDR GET IN SYNC
LDX #RDBUF GET BUF ADDR
STX $007E PASS IT
JSR RBLOK READ BLOCK
JSR MOTOFF TURN OFF MOTOR
LDS RDOLD GET ZBUG S
SWI RETURN TO ZBUG

Kkhhhkkkkkkkkkkihkkkhkhkhkrkhhhhkhkkkhhhhkkhhdhkhkkr

RDOLD RMB 2 ZBUG S STORAGE
RDSTK  RMB 16 STACK AREA
RDBUF  RMB 100 BUFFER AREA

Kkdkkhkkkkikkkkkkkkhhkkhhkkkkkhhkhkkhkikhkikkks

*SUBROUTINE NAME: WLDR
*THIS WILL TURN ON THE CASSETTE MOTOR AND
*RITE A GAP AND LEADER. 14 BYTES OF STACK
*AREA ARE REQUIRED.
Fekkhkkkkhkhkikkkkrkhkhikkkkkhhhhkhkhhhkkhhkhkkhkkhkkdk
WLDR  PSHS D,X,Y,DP,CC SAVE REGS

CLRB GET 00

TFR B,DP CLEAR DP REG

JSR [$A0OC] CALL WRTLDR

PULS D,X,Y,DP,CC RESTORE REGS

RTS RETURN
Fkdokkkk Kk Rk Rk ke Rk kodkdkkkdekdokkddok ke ko ded ik dok



6000 *SUBROUTINE NAME: WBLOK

6010 *THIS WILL WRITE HEADER, DATA, OR EOF BLOCK
6020 *ON CASSETTE TAPE. ADDRESSES 7C=BLOCK TYPE;
6030 *7D=BUFFER LENGTH; 7E+7F=BUFFER ADDRESS.

6040 *20 BYTES OF STACK AREA ARE REQUIRED.
6050 *hdkkkrhkhkhddkkhkhhkhkhkk ks ddk Rk dokdkd Rk

6060 WBLOK  PSHS D,X,Y,DP,CC SAVE REGS
6070 CLRB GET 00

6080 TFR B,DP CLEAR DP REG
6090 JSR [$A008] CALL BLKOUT
6100 PULS D,X,Y,DP,CC RESTORE REGS
6110 RTS RETURN

6120 kodedokkkkkkkkkdkkdodkdokdodhkkkkkkkdkkkkkhkikkkkikkhkdk

6200 *SUBROUTINE NAME: MOTOFF
6210 *THIS SUBROUTINE WILL TURN OFF THE CASSETTE

6220 *MOTOR. TWO BYTES OF STACK AREA ARE USED.
6230 *kkkkkkkkdkkkkkdokkkkkhhkddkkk kR ek kkk

6240 MOTOFF PSHS A,CC SAVE REGS

6250 LDA $FF21 GET CONTROL BYTE
6260 ANDA #3$F7 CLEAR BIT 3

6270 -STA $FF21 STORE CONTRL BYTE
6280 PULS A,CC RESTORE REGS
6290 RTS RETURN

6300 Fhhkdkdkikdhkbkhkkkhkhkhhhikhhkkhkhhhkhdhrits

6400 *SUBROUTINE NAME: RLDR

6410 *THIS WILL TURN ON THE CASSETTE MOTOR AND
6420 *USE THE LEADER TO GET IN SYNC FOR READING
6430 *THE FOLLOWING BLOCK. 14 BYTES OF STACK

6440 *AREA ARE USED.
G450 Fadkkkddkkdkddkdhdhhddd kR ddhddok KRk R R KRR KA Rk

6460 RLDR  PSHS D,X,CC,DP SAVE REGS
6470 CLRB GET 00

6480 TFR B,DP CLEAR DP REG
6490 JSR [$A004] CALL CSRDON
6500 PULS D,X,CC,DP ' RESTORE REGS
6510 RTS RETURN

6520 *kkkkkkhkkkkkkhkkkhkikkkhkhikhhhkhikhdkkhkkikk

6600 *SUBROUTINE NAME: RBLOK

6610 *THIS WILL READ A BLOCK IF THE CASSETTE IS
6620 *IN SYNC. 7E+7F=BUFFER ADDR. UPON RETURNING;
6630 *7D=BLOCK LENGTH, 7C=BLOCK TYPE, AND THE
6640 *A REG AND Z BIT INDICATE READ STATUS.

6650 *14 BYTES OF STACK AREA ARE REQUIRED.
G660 FkkkrFk kAR A Ak Ih TR R KK H k" AKTA R KKKk R ATk Ak

6670 RBLOK  PSHSB,X,DP SAVE REGS

6680 CLRA GET 00

6690 TFR A,DP CLEAR DP REG

6700 JSR [$A006] CALL BLKIN

6710 PULS B,X,DP RESTORE REGS

6720 RTS RETURN

6730 *kkdkkdkdkkddddhkkdokdokdodkdok ok dodk ok kR Rk dok doRdok
6740 END

Listing 8-16 The BKOUT and RDBLK Programs.

Assemble the source code with the A/IM/WE/AQO command and verify there
are no errors. Both programs are now in memory. Go to ZBUG and run the
first. program by entering GBKOUT. It writes a leader and a data block on



tape. Position the tape back to the stafting point and run RDBLK. This
reads the data into the RDBUF buffer area. Use ZBUG to verify the data was
loaded into RDBUF by observing that it is the same as the data in BKBUF.

Disk I/0

Disk drives can be connected to the Color Computer; they store and read
data to and from 5 1/4 inch floppy disks. The following descriptions apply
to the disk drives and controller sold by Radio Shack for the Color
Computer.

When disk drives are added to the Color Computer, Disk Extended Color
BASIC provides the extra capabilities required to use the disks. When the
disk controller is plugged into the ROM module slot the added programs
reside in ROM from address $C000 to $DFFF. EDTASM+ and disks can not be
used at the same time, because only one can be plugged in to the Color
Computer at a time. You can use EDTASM+ to generate object code on tape,
and then connect the disk drives and load the object code from tape. First
let’s look at the manner in which data is organized on disk.

The disks are coated with a film of magnetic material so data can be
recorded on it much like the way data is recorded on magnetic tape. Data is
recorded on tape along its length. Data is recorded on disk along the
length of a narrow circular path on one side of the disk as the disk is
rotated by the disk drive. On each disk are 35 circular paths known as
tracks. Each track is identified by a number, from 0 to 34. The track
organization on a disk is illustrated in Fig. 8-13. The small hole in the
disk, seen in Fig. 8-13, is used to identify the starting point of the
tracks. Track O is the outermost circular path, and higher-numbered tracks
are positioned inward. The tracks are concentric -circles, not a spiral.

track 0

rotation

Fig. 8-13 Tracks On a Disk.



Each track is divided into 18 sectors of equal length. Each sector is
identified by its number, from 1 to 18. Each sector contains 256 bytes of
data. A sector is accessed by positioning a read/write head over the
desired track and waiting until the desired sector passes by. A buffer of
256 bytes can be written to or read from a sector as it passes by the
read/write head. The act of moving the read/write head to a track is called
seeking. :

The sectors are numbered by the DSKINI BASIC command, normally set up
with a skip factor of four. This causes the sectors to be labelled as
shown in Fig. 8-14. The skip factor of four causes four sectors to be
between consecutively numbered sectors. In Fig. 8-14 sectors 12, 5, 16, and
9 are between sectors 1 and 2.

Fig. 8-14 Sector Numbering.

Tracks 0 - 16.and 18 - 34 store data. Track 17 contains the disk
directory. The disk directory is used by BASIC to keep track of where
data has and has not been recorded on the disk. BASIC assigns disk space to
a data or program file in granules of 9 sectors, one half a track., A
BASIC data file that requires 12 sectors would be assigned two granules, or
18 sectors. There are 68 granules, numbered from 0 - 67. Granule 0 is
composed of sectors 0 - 9, the first half of track 0. Granule 1 is located
in sectors 10 - 18, the second half of track 0. This assignment scheme
continues up to granule 67 which occupies the second half of track 34.

The disk directory is composed of two sections: the file allocation
table and the directory entries. The file allocation table is stored
in sector 2, and the directory entries are stored in sectors 3 - 11 of
track 17. Sectors 12 - 18 of track 17.are not used. The directory entries
contain up to 72 entries, each 32 bytes long. Each directory entry




describes a different file on the disk. The format of an entry is shown in
Fig. 8-15. The bytes in an entry are described as follows:

0-7 - File name, left justified and blank filled. If byte 0 = 00; a
previous entry has been deleted and this entry is available for
use. If byte 0 = FF; this entry and all following entries have
not been used and are available for use.

8-10 - File name extension, left justified and blank filled.

11 - File type code: 00=BASIC program file, 01=BASIC data file,
02=0bject code program file, 03=text editor source code file.

12 - ASCII flag: 00 = binay format, FF = ASCII format.

13 - The number of the first granule assigned to this file. May contain
from 00 to $43.

14-15 - The number of bytes stored in the last sector of this file.

01 2 34 56 7 89 101112131415 16 32
|nn nn nn NN nn hn Nn nn XX Xx xx tt aa gg bb bb unused ]

Fig. 8-15 Format of a Directory Entry.

The file allocation table is composed of an entry for each granule.
Each entry is one byte long, so bytes 0 ~ 67 contain the granule
information and the rest of the bytes are cleared and not used. Byte 0
contains information about granule 0, byte 1 about granule 1, up to byte
67, which describes granule 67. The contents of each byte are interpreted
as follows:

If byte = FF, that granule is not currently part of a file and is

available.

If byte = 00 - $43, that granule is part of a file and the contents of
this byte is the number of the next granule in the file.

If byte = $CO - $C9, that granule is the last granule of a file.
Represented in bits 0 - 5 is the number of sectors in this granule
in use.

The directory entries and file allocation table are used to determine what
sectors and/or granules are in‘use. For more detailed information, see
Color Computer Disk System, the manual that comes with the Radio Shack
disk drives.

= DSKCON

Function: This subroutine provides for writing and reading data to and
from disk.

Address: [$C004] S Stack Use: 25 bytes
Registers Modified: CC.

Pass Parameters: The DP register must contain 00. The parameters are
passed in a table that the contents of addresses $C006 and $C007 point to.



[$C006:3C007] = Operation code where:

00 = move read/write head to track 0;

01 = no operation;

02 = read data from sector into memory;

03 = write data from memory to sector;
[$C006:3C007] +1 = Disk drive number (00 - 03);
[$C006:$C007] +2 = track number (00 to 22 hex);
[$C006:$C007] +3 = sector number (01 to 12 hex);
[$C006:3C007] +4, +5 = starting address of buffer area.

Return Values: A status byte is returned in memory address [$C006:C007]
+6. Bits 2 - 7 indicate the result of attempting a disk operation. If this
byte is 00 at the end of an operation, the operation was performed
successfully. The meanings of each bit, if set, are:

Bit 7 - Disk drive is not ready. This should never occur because thls
signal is not used.

Bit 6 - Write protect error. One tried to write on a write protected
disk.

Bit 5 - Write fault. An error was detected during a write operation.

Bit 4 - Seek error or sector not found. Also occurs if the disk was
not initialized with the DSKINI command or if one tries to
access a non-existant sector.

Bit 3 - CRC error. Indicates data was not read correctly from the
disk.

Bit 2 - Lost data during a read or write because the MPU didn’t
respond to the disk’s data request soon enough.

Any of the above errors can also occur if something is wrong with the disk
or disk drive.

The starting address of DSKCON is.located in addresses $C004 and $C005.
It can be called with extended. indirect addressing.

JSR [$C004] or JSR §D66C

One can also read the value (typically $D66C) from $C004 and $C005 and use
extended addressing.

The parameters are passed to DSKCON ‘in a table whose starting address
is contained in addresses $C006 and $C007. This table typically starts at
address $EA. At location $EA (first byte) is the desired disk operation
code. At location $EB (second byte) is the desired disk drive number. At
location $EC (third byte) is the track number. At location $ED (fourth
byte) is the desired sector number. In the fifth and sixth bytes, locations
SEE and $EF, is put the starting address of the buffer area. Now DSKCON can
be called. When writing, the data in the buffer area (256 bytes) is written
on the sector of the selected track. When reading, 256 bytes are read from
the sector of the selected track into the buffer area. When DSKCON returns,



the return status is in location $F0 or [C006:C007] +6. If its contents are
00, the operation was performed successfully.

When DSKCON is called, it turns on the disk drive motor and performs
the operation passed to it. However, upon returning it does not turn the
motor off. This is done by clearing the contents of dedicated address $FF40
with the instruction: CLR $FF40. One does not have to turn off the disk
motor after every operation. If reading in several sectors, the motor only
needs to be turned off after reading in the last desired sector. If there
is a long time period between disk operations it is best to turn off the
motor to reduce wear.

Since DSK.CON does not preserve the contents of the CC register, it may
be called from within a subroutine that saves and restores the CC register.
This subroutine in Listing 8-17 also ensures the DP register is clear
before calling DSKCON.

6800 *SUBROUTINE NAME: DISK . ;
6810 *THIS SUBROUTINE WILL CALL DSKCON TO PROVIDE
6820 *ACCESS TO A DISK. 30 BYTES STACK AREA ARE USED
6830 Fkhkkkkhkhkkkhhkhhkkhkkkikhkkkkkkkkkkkkhkkhkhkhkhkhhkhhkhk
6840 DISK - PSHS A,CC,DP  SAVE REGS

6850 CLRA GET 00

6860 TFR A,DP CLEAR DP REG

6870 JSR [$C004] CALL -DSKCON

6880 PULS A,CC,DP.  RESTORE REGS

6890 RTS RETURN

6900 Khhhhhhkkhkkhkhkkkhkkkkkhhkhhhhkkhkhkkkkkhkkhkhkhkhkkiikkikhk

Listing 8-17 The DISK Subroutine.

Listing 8-18, DGRAN, is a demonstration of using the DISK subroutine.
It reads each sector of each track on drive 0 and checks the resulting
status. When a bad status is detected, that track/sector number is
displayed on the screen. The program continues in this fashion to the last
track. The subroutine ASCNUM used is similar to the PHEX program of

Chapter 7.
100 *PROGRAM NAME: DGRAN
110 *THIS PROGRAM WILL READ EVERY SECTOR ON DRIVE
120 * O AND DISPLAY TRACK/SECTORS THAT ARE
130 *DEFECTIVE.
140 khkkhhkkhkkkkkhhkkkkkhkkhhhkkkkxkhkrkhkkkkkkkhkkkkihkk
150 ORG $2800 LOAD - ADDR
160 DGRAN  STS DGOS SAVE S
170 LDS #32+DGSTK  NEW STACK
180 JSR CLS CLEAR SCREEN
190 LDY - $C006 GET TABLE ADDR
200 LDD #$0001 TRK 0, SECT 1
210 DG1 STD 2,Y PUT IN TABLE
220 LDU -#$0200 READ, DRIVE 0
230 STU ,Y PUT-IN TABLE
240 LDU #DGBF GET BUF ADDR
250 STU 4,Y PUT IN TABLE
260 JSR DISK READ DISK
270 TST 6,Y ERRORS ?




280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
470
480
490
500
510
520
530
540
550
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
6800
6810
6820
6830
6840
6850

BEQ DG2 BRANCH IF NONE
LDX #DGETX GET MESS ADDR
STA ASBYTE PASS TO ASCNUM
JSR ASCNUM CONVERT TO ASCII
LDU ASRES GET RESULT
STU 10,X PUT IN MESSAGE
STB ASBYTE PASS TO ASCNUM
JSR ASCNUM CONVERT TO ASCII
LDU ASRES GET RESULT
STU 20,X PUT IN MESSAGE
JSR DSPLAY DISPLAY MESSG
DG2 INCB NEXT SECTOR
CMPB #18 18 OR LESS ?
BLS DG3 YES, BRANCH
LDB #3%01 SECTOR TO ONE
INCA NEXT " TRACK
DG3 CMPA #34 LAST TRACK ?
BLS DG1 NO- ‘DO AGAIN
DGEND  LDS DGOS GET §
RTS RETURN TO BASIC
L T T T e e ey
DGOos RMB 2 BASIC S STORAGE
DGSTK  RMB 32 STACK AREA
DGETX  FCC /BAD TRACK SECTCR /
FDB $0D22 CR/LF AND END
DGBF RMB 256 BUFFER AREA

Tkkkkkkkkhkkhkkkkikkkhkkkkikhkhhihkkhhhkrkhhkhkkhhkkk

*SUBROUTINE NAME: CLS
*THIS SUBROUTINE WILL CLEAR THE TEXT SCREEN
*AND RESET THE DISPLAY POINTER. 6 BYTES OF

*THE S STACK ARE USED.
ook dokoR kR kR ek Rk R kR de o ded e ded sk dek ok e ek ok e

CLS PSHS B,X,CC SAVE REGS
JSR $A928 CALL CLSCRN
PULS B,X,CC RESTORE REGS
RTS RETURN

kkkkdkkkkdhkkhkkkkkRkkkkhkkkhhkhkhkkhkkkkkkkhkhkk

*SUBROUTINE NAME: DSPLAY

*THIS SUBROUTINE WILL DISPLAY THE TEXT STRING
*(ASCI1 CODES) THAT THE X REGISTER POINTS TO
*STARTING AT THE POSITION SPECIFIED BY -THE
*NISPLAY POINTER. A CODE OF OD IN THE STRING
*WILL CAUSE A CR/LF. A CODE OF 22 (%)
*INDICATES THE ‘END OF ‘A STRING TO DISPLAY. 20
*BYTES OF STACK AREA ARE REQUIRED.

ededkd ke ke ek ek Rk bk kk kR kR ARk kR kR Rk ek kkokokdok

DSPLAY PSHS D,X,U,CC,DP SAVE REGS

CLRB GET 00

TFR 8,DP CLEAR DP REG
LEAX -1,X ADJUST POINTER
JSR $B9SC CALL DISPL
PULS D,X,U,CC,DP RESTORE REGS
RTS RETURN

khkkhkhREkRAEAAREhIhhhhrhkhkrhkRREhRARAR Rk khkkkhidd

*SUBROUTINE NAME: DISK
*THIS SUBROUTINE WILL CALL DSKCON TO PROVIDE
*ACCESS TO A DISK. 30 BYTES OF STACK ARE USED.
Feededdeok kR e sk ek ek e e ok ke ok e sk ok ek e ok ek ok
DISK PSHS A,CC,DP SAVE REGS

CLRA GET 00




6860
6870
6880
6890
6900
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280

TFR A,DP
JSR [$C004]

CLEAR DP REG
CALL DSKCON

PULS A,CC,DP RESTORE REGS

RTS RETURN
dedededkdokdok e e deddkdokkhkkdk kR dokkdd Rk dkkkkddokdeok
*SUBROUTINE NAME: ASCNUM
*THIS WILL GENERATE THE ASCII CODES OF TWO
*HEX DIGITS IN BYTE ASBYTE. THE TWO CODES ARE

*PUT IN ASRES.
hkkkkkihkiRhhiikkihkkikkkiikkkkhkkhkhihkkhrkkik
ASCNUM  PSHS D SAVE REGS

LDB ASBYTE GET BYTE

LDA #$10 MULTIPLIER VALUE

MUL SHIFT MS NIBBLE TO A

CMPA #$09 GREATER THAN 9 ?

BHI ASC1 YES, JUMP

ADDA #48 MAKE ASCII

BRA ASC2 CONTINUE
ASC1  ADDA #55 MAKE ASCII
ASC2  STA ASRES STORE RESULT

LDA ASBYTE GET BYTE

ANDA #$OF GET LS NIBBLE

CMPA #3509 GREATER THAN 9 ?

BHI ASC3 YES, JUMP

ADDA #48 MAKE ASCII

BRA ASC4 CONTINUE
ASC3  ADDA #55 MAKE ASCII
ASCh  STA 1+ASRES STORE RESULT

PULS D,PC RESTORE + RETURN
kdkkkkkkikkhdhidkdkkkkhkkkihkihkikhiokkkkikkkhrkikkr
ASBYTE RMB 1 DECODE BYTE
ASRES  RMB 2 RESULTING CODE
Khhkhkkkkhkhkkkhhkkkhkkhkkikkkhhkhhkhkhkhkirhikikkkhik

END $2800 EXEC ADDR

Listing 8-18 The DRGRAN Program.

Assemble the source code on tape with the command: A DGRAN/WE, and
verify that there are no errors. Turn off the Color Computer, unplug the
EDTASM+ module and connect the disk drives. Turn everything on and load
DGRAN from tape with the CLOADM command. The program is run with the

EXEC command.



CHAPTER 9

Internal Control and Graphics

The Color Computer has more major components, serving such purposes
as input and output, video display generation, interrupt generation, and
internal operation control. Each component is controlled through dedicated
addresses from the MPU. Fig. 9-1 is a simplified block diagram of the major
components in the Color Computer. The new components are the SAM, PIAs,
and the VDG. The SAM, or synchronous address multiplexer, synchronizes
the operation of the other components so they all work in harmony. The VDG,
or video display generator, generates a text or graphics display. Through
the PIAs, or peripheral interface adapters, one controls external
devices: input or output data; the VDG; and some of the interrupt sources.

ROM

< J SAM

\ Addr-Bus " |MC6883 Control and Select Bus
MPU |
MC6809E! Control Bus

[ 1] [

Data Bus

PIA 1 [ JPIA2 []VDG [|RAM
MC6821f |McC6821[ |[MC6847

- T -1 J

|
Cartridge Connector

Fig. 9-1 Block Diagram of the Color Computer.



SYNCHRONOUS ADDRESS MULTIPLEXER

The SAM is the general controller of all the components in the Color
Computer. It is a large scale integrated circuit: a Motorola MC6883. It
synchronizes the operation of the various components so they work together,
decodes addresses, and controls the operating modes of other components.
Synchronizing the major components isn’t covered because it is primarily a
hardware function and not related to programming; this operation is
transparent to a programmer.

Controlling the SAM

The operation of the SAM is directed through 16 control bits. The bits
are set or cleared by writing into dedicated addresses. No value is stored
in these dedicated addresses; the act of writing into one of them causes a
control bit within the SAM to be set or cleared. The SAM control bits,

. their dedicated addresses, and their uses, are shown in Table 9-1. A
.control bit is cleared by writing into its even-numbered dedicated address
and set by writing into the odd-numbered address. Following Table 9-1 is a

description of each control bit.

Control Bit Function Dedicated Address
Set Clear
TY Memory map mode FFDF | FFDE
Ml Memory FFDD | FFDC
MO size FFDB | FFDA
R1 MPU FFD9 ;| FFD8
RO cycle rate FFD7 | FFD6
Pi Page Number FFD5 | FFD4
Fo6 FFD3 | FFD2
F5 FFD1 | FFDO
F4 Video display FFCF | FFCE
F3 starting address FFCD | FFCC
F2 FFCB | FFCA
F1 FFC9 | FFC8
FO FFC7 | FFC6
V2 Video display FFC5 | FFC4
Vi1 mode FFC3 /| FFC2 -
A4 FFC1 | FFCO

Table 9-1 SAM Control Bits.

® Memory Map Mode - This bit, TY, is cleared by BASIC when the computer is

turned on. The TY bit tells the SAM how to map memory. When it is clear,

RAM memory is available from addresses 0000 - $7FFF in a computer with 32K
or 64K RAM. In a computer with 16K. RAM, the RAM addresses extend from

0000 - $3FFF. Addresses $SOOQ - $BFFF access the internal ROM, which



contains Color BASIC and Extended Color BASIC. Addresses $C000 - $FEFF
access the ROM plugged into the ROM cartridge slot. Addresses $FF00 - $FFFF
are dedicated addresses. Thus when the TY bit is clear, RAM is available in

the first half of memory and internal and/or external ROM is available in

the second half of memory.

When the TY bit is set the SAM directs all addresses from the MPU to
RAM, except for the dedicated addresses $FF00 through $FFFF. For this mode
to operate correctly the older Color Computer with 64K must be modified to
allow accessing of RAM addresses $8000 through $FEFF. A letter entitled
"Color Computer Enhancements" by Robert Brooks in the September, 1982 issue
of 80 Micro describes a method to implement this modification. The Color
Computer 2 already has this modification. All descriptions of the SAM
operation with the TY bit set assume this modification has been installed.
When TY is set, BASIC and cartridge ROM are not avaliable, but a Color
Computer with 64K RAM can use nearly all of it, instead of just the first
32K. In a 64K computer longer assembly language programs can reside in
memory but ROM is not available. Memory maps for TY being set and cleared
are shown in Fig. 9-2.

SAMs produced before January 1, 1983 do not operate when TY and RO or
R1 are set (see MPU Clock Rate description). The date of manufacture is
marked on the MC6883 as YYWW where YY is the year and WW is the week.
The Color Computer 2 contains the newer SAM.

When the TY bit is set, only the amount of RAM in the computer is
available. Thus a 16K computer will have 16K of RAM and no ROM available
when the TY bit is set.

TY Clear Address TY Set
0000
RAM
Extended : 8000 RAM
Color BASIC '
Color A000
BASIC
External C000
ROM
(cartridge) '
Dedicated FF00 Dedicated
Addresses FFFF Addresses

Fig. 9-2 Effect of TY Bit on Memory Map.



® Memory Size - The memory size bits, MO and M1, tell the SAM what type of
RAM integrated circuits are in the computer. The three different types
correspond to the three RAM sizes: 4K, 16K, and 32/64K. The MO and Ml bits
are set or cleared by BASIC to the value corresponding to memory size when
the computer is turned on. Thereafter their states should not be changed or
data may be lost from RAM. The states of M0 and M1 which correspond to the
different memory sizes are shown in Table 9-2. The M0 and M1 bits do not
specify the amount of RAM available, but tell the SAM how to use the type

of memory integrated circuits in the computer.

M1 MO Memory Size

0 0 K

0 1 16K .
f 4 .

1.0 3064k | (4 K era/w?,c

1 1 not used 64 ¥ (7al €

Table 9-2 Memory Size Control Bits.

m MPU Clock Rate - Control bits RO and R1 control the MPU clock signals, E
and Q, generated by the SAM. Usually both bits are clear, setting a 0.89
megahertz (million cycles per second) MPU clock rate. The clock signals

step the MPU through its sequences and so control its speed of operation.

The settings and results of the RO and R1 bits are shown in Table 9-3. The
clock rate is also dependent on what addresses are being accessed by the

MPU.

Clock Rate While Addressing

R1 RO | 0-7FFF | 8000-FEFF | FF00-FF1F |FF20-FFFF
0 0 0.89 0.89 0.89 0.89

0 1 0.89 1.78 0.89 1.78

1 X 1.78 1.78 1.78 1.78

Table 9-3 Clock Rates in Megahertz.

As you can see, setting the RO bit doubles the operating speed of the
MPU while it is operating in ROM. When running at this higher speed the
computer will execute BASIC programs approximately 40 percent faster. The
execution speed is not doubled because the BASIC statements are in RAM
where the clock rate is at the slow speed. Assembly language programs
residing in the lower 32K will run at the normal speed when RO is set. The
higher speed should be used with caution however, because this cycle rate
is beyond the specifications of the MC6809E and it may not run properly. If
you want the MPU to run reliably at the higher speed, the MPU should be
replaced with an MC68BOSE; the high speed version of the MC6809E.

Setting R1 sets the high speed mode while accessing all addresses. This



will require the RAM and PIAs to be capable of this high speed. The high
speed PIA is the MC68B21.

When ROM I/0 subroutines are used to output or input data to or from
external devices the clock rate must be set to its normal rate: R1 and RO
must be cleared for the subroutines to work properly. The MPU execution
rate affects the rate at which data is output or input by the subroutines.
Also some ROM modules, such as EDTASM+, will not work when the clock rate
is set high.

m Page Number - The page number bit, P1, is cleared by BASIC when the
computer is turned on. The effect of P1 set can only be used by a 64K Color
Computer. A 64K RAM is considered as two 32K pages. When the page number
bit is clear page 0 is the first 32K and page 1 is the upper 32K. With TY
clear (RAM/ROM mode) and the page number bit clear the first 32K of RAM
occupies addresses 0000 through $7FFF and ROM extends upward from there.
Setting the page number bit results in the upper 32K of RAM, which was not
accessable with TY clear, being accessed by addresses 0000 through $7FFF.
This allows you to have two BASIC programs in RAM at the same time; one in
page 0 and the other in page 1.

With TY set (all RAM mode) the page number bit controls which page of
64K is the lower half: that accessed by addresses 0000 through $7FFF. The
other page is then the upper half.

m Video Display Starting Address - The video display starting address, bits
FO through F6, specify the starting address of the video (screen) buffer
area. The seven bits are used to construct a 16-bit address as seen below:

F6F5FAF3F2F1F0O 0 00000000

Bits FO through F6 make up the upper seven bits and the other bits are
clear. When the computer is turned on, BASIC sets bit F1 and clears the

rest, giving a buffer starting address of $0400. When graphics are

displayed using BASIC the FO bit is set so the graphics video buffer starts

at address $0600. One can specify a video buffer at any address in RAM that
is a multiple of $200 with the video display starting address bits. Using
several video buffers in memory at the same time, one can very quickly
change a display just by changing the states of the F control bits to point

to the desired buffer. The length of the video buffer depends on the

display mode being used. (See the next item.)

m Video Display Mode - The video display mode bits, VO, V1, and V2, are
used in conjunction with the video display generator. These bits control

the size of the buffer area the SAM sends to the VDG for conversion to a
video signal, which is then sent to the television set. The SAM sends the
buffer contents to the YDG 60 times a second, the rate at which the picture




is continually repainted on the TV screen. The valid settings of the video
display mode bits, the buffer size, and the display modes they use are
shown in Table 9-4.

V2 V1 V0 Buffer Size Display Modes
0 0 -0 512 AISG4,SG6

o 0 1 1024 : GIC, GIR

0 1 O 2048 G2C, SG8

0 1 1 1536 G2R

1 -0 0 3072 G3C, SG12

1 0 1 3072 G3R ~

1 1.0 6144 G6R,G6C,SG24
1 1 1 Not  Used

Table 9-4 SAM Video Display Modes.

The buffer sizes are listed in decimal. The display modes will be
described in the Video Display Generator section of this chapter. There are
more details to be described concerning directing the VDG to generate the
desired display mode.

Decoding Addresses

A major SAM task affecting programs is how it decodes addresses. The
MPU sends a 16-bit address to the SAM, which inspects and decodes it. Upon
decoding the address, the SAM selects the appropriate component to which
data is to be written or from which data is to be read. The components that
may be addressed are RAM, ROM, the VDG, the PIAs, ROM in the cartridge
slot, and the SAM itself. However, the state of the SAM control bit, TY,
will affect this decoding process. Following is a description of the
addresses whose decoding is affected by the state of the TY bit.

m Decoding with TY Clear - When the TY bit is clear, the addresses are
decoded as shown in Fig. 9-2. Upon closer inspection, one will find that
certain locations can be accessed with more than one address.

The interrupt vector table is accessed with addresses $FFFO0 through
$FFFF. This table actually resides in BASIC ROM addresses $BFFO - $BFFF.
One can display both tables and see that they are the same. Upon recelving
an address from $SFFFO to $FFFF the SAM will decode it as though it were a
ROM address of $BFF0 through $BFFF.

PIA 1 is accessed via four dedicated addresses, $FF00 through $FFO03.
PIA 2 is accessed via four dedicated addresses, $FF20 through $FF23. The
SAM, with TY clear, also decodes other addresses as PIA dedicated
addresses. The others (redundant addresses) work just as well as the
primary dedicated addresses, and are shown in Table 9-5.




Primary Redundant
PIA | Dedicated Address Dedicated Addresses
FF00 FF04,FF08,FFOC,FF10,FF14,FF18,FF1C
1 FFO01 FF05,FF09,FFOD,FF11,FF15,FF19,FF1D
FF02 FF06,FFOA ,FFOE,FF12,FF16,FF1A,FFIE
FF03 FF07,FFOB,FFOF,FF13,FF17 FF1B,FF1F
FF20 FF24,FF28 FF2C,FF30,FF34,FF38,FF3C
2 FF21 FF25,FF29,FF2D,FF31,FF35,FF39,FF3D
FF22 FF26,FF2A ,FF2E,FF32,FF36,FF3A,FF3E
FF23 FF27,FF2B,FF2F,FF33,FF37, FF3B,FF3F

Table 9-5 PIA Primary and Redundant Addresses (TY=0).

The disk controller is accessed through five dedicated addresses; $FF40
and $FF48 - $FF4B. The SAM, with TY clear, also decodes other addresses as
disk controller dedicated addresses. The redundant addresses, which work
just as well as the primary dedicated addresses, are shown in Table 9-6.

Primary

Dedicated Addressed Redundant Dedicated Addresses
FF40 FF41 - FF47 and FF50 - FF57
FF48 FF4C, FF38, FF5C
FF49 FF4D, FF59, FF5D
FF4A FF4E, FF5A, FF5E
FF4B FF4F, FF5B, FF5F

Table 9-6 Disk Controller Primary and Redundant Addresses (TY=0).

m Decoding With TY Set - When the TY bit is set, the addresses are decoded
as shown in Fig. 9-2. The SAM decodes an address as a RAM or primary
dedicated address.

The interrupt vector table can be found only at addresses $FFF0 -
$FFFF. However, the SAM is still getting their contents from BASIC ROM
addresses $BFF0 - $BFFF. The PIAs can be accessed only through their
primary dedicated addresses. The primary dedicated addresses for PIAs 1 and
2 are shown in Table 9-5. The disk controller can be accessed only through
its primary dedicated address, as shown in Table 9-6. There are no
redundant addresses when the TY SAM control bit is set.

PERIPHERAL INTERFACE ADAPTER

It is through the two peripheral interface adapters, PIAs 1 and 2, that
the MPU communicates with external devices: the keyboard, joysticks,
cassette, and printer. One PIA is also used to generate sound. Each PIA is
a Motorola MC6821 large scale integrated circuit.

A PIA is composed of two halves that are almost identical. One ‘half is



the A side and the other is the B side. Each side can input or output a
byte of data and send an interrupt to the MPU. Since the Color Computer has
two PIAs, there are four data paths to input and output data. Fig. 9-3 isa
simplified diagram depicting a PIA with its data paths and buses.

It is via the control bus that the PIA sends an interrupt to the MPU.
The control & select bus is used to select a particular PIA and also its A
or B side. A byte is transferred between the MPU and a PIA over the data
bus. On the right side of the PIA are the data paths, connected to other
devices. Each side of a PIA has its own data path of eight bits. In
addition, the A side has two signals - CAl and CA2, and the B side has CBl!
and CB2, which are also connected to other components. Data is sent or
received on a data path in a parallel fashion. A byte sent out on the A
side would send the individual bits 0 - 7 out on signal lines PAO - PAT,
respectively. Each PIA contains within it six registers, three registers in
each side. This can be seen in Fig. 9-3.

CAl
CA2

PA7
— 4 |Data Register A (DRA) | PAG6
Data Bus PAS
rData Direction Register A (DDRA)J PA4
PA3 Data Path A
[Control Register A (CRA)I PA2 :
PAl
Control & ‘ PAO A Side
Select Bus

i

PB7 B Side
PB6
[Control Register B (CRB) | PB5
PB4
Control Eata Direction Register B (DDRB)I, PB3 Data Path B
Bus PB2
| [Data Register B (DRB) | |__ PBI
PBO

CB1
CB2

Fig. 9-3 Block Diagram of a PIA.

Each side has a complete set of three registers, so each side can



operate independently. One register is the data register (DRA or DRB),
through which data is sent from the MPU to the data path or from the data
path to the MPU. The contents of the data direction register (DDRA or
DDRB) control the direction the data will flow through the individual bits
of the data register. Remember that in and out are referenced to the MPU;
out is from the MPU and in is toward the MPU.

The contents of the control register (CRA or CRB) control the
operation of the CAl, or CBI, and CA2, or CB2 signals, and whether the data
register or data direction register can be accessed through a dedicated
address by the MPU. The operation of only the A side registers is presented
since they generally operate the same as the B side registers. Only the CRB
operates slightly differently from the CRA.

Data Register (DRA or DRB)

The DRA, an eight-bit register, is accessed from the MPU through its
dedicated address if bit 2 of the CRA is set. When outputting the MPU can
store data in the DRA, which will then be outputted over data path A. When
inputting the MPU can read data from the DRA, and the contents of the DRA
will reflect the data on data path A. It is through the DRA that the MPU
can read the states of the bits PAO - PA7 or send data out on the data
lines PAO - PA7, :

Each bit of the DRA can be configured for outputting or inputting. For
example, one can configure DRAO - DRA3 for output and DRA4 - DRA7 for
input. However, a bit can be in only the output or input condition. The
data direction of the bits of the DRA is controlled by the DDRA.

Data Direction Register (DDRA or DDRB)

The DDRA, an eight-bit register, is accessed from the MPU through the
same dedicated address as the DRA when bit 2 of the CRA is clear. One
dedicated address is used to access either the DRA or DDRA, depending on
the state of bit 2 of the CRA. The contents of DDRA will configure each bit
of the DRA for input or output. Each bit of the DDRA controls the
corresponding bit of the DRA: DDRAO controls DRAQ, DDRAI controls DRAI,

DDRA=AS DRA Bit Number
PA7
PA6
PAS
PA4
PA3
PA2
PAI
PAO

— O~ OO O M~
VAVY AAVAYV

Fig. 9-4 Configuring the DRA.,



etc. If a bit in the DDRA is clear, the corresponding bit in the DRA is
configured for inputting. If a bit in the DDRA is set, the corresponding

bit in the DRA is configured for outputting. For example, if the DDRA
contains $AS5, DRA bits 1, 3, 4, and 6 are configured for inputting, and
bits 0, 2, 5, and 7 are configured for outputting. This is graphically

shown in Fig. 9-4. The right arrow indicates output only and the left arrow
indicates input only. As you can see, the MC6821 is quite a versatile
component.

Control Register (CRA or CRB)

The CRA is the most complicated register, since it controls the largest
number of items. The items controlled include the CAl signal, DRA/DDRA
access, and the CA2 signal, and it provides indications of the states of
CA1l and CA2. The CRA, an eight-bit register, is accessed via its dedicated
address. The MPU can read data from it and write to some of its bits. The
format of the CRA or CRB is shown in Fig. 9-5. Each field in the CRA or CRB
will be described. All CRA fields act the same as CRB except for the
CA2(CB2) Control field.

7 6 5 4 3 2 1 0
Int. Int.
Flag Flag CA2(CB2) Control . IDDR/DR| .. CAI1(CBIl)
CA(B)1 |CA(B)2 Access Control

Fig. 9-5 PIA Control Register A(B).
Courtesy of Motorola, Inc.

m CAI(CBI1) Control - The CAl control field controls how the CAl signal is
interpreted by the PIA. The CA1l signal is always configured as an input in
the Color Computer. It is changed by writing to the CRA(B).

Bit 1, when clear, causes the CAl signal to set an active state in the
PIA when the signal received by CA1l from another device changes from a high
(logical 1) to a low (logical 0).

Bit 1, when set, causes the CAl signal to set an active state in the
PIA when the signal received by CAl from another device changes from a low
(logical 0) to a high (logical 1).

Bit 0, when clear, lets the CA1 active state set bit 7 (CAIl flag) of
the CRA. Bit 7 set indicates that CA1 was activated by the required
transition., ' a

Bit 0, when set, lets the CA1 active state set bit 7 of the CRA and
send an interrupt to the MPU. Bit 0 of the CRA can enable or disable the
sending of interrupts generated by CAl.

The above description is equally applicable to the B side of the PIA:
the CRB and CBI.



m DDR/DR Access - Bit 2 of the CRA is used to determine which register, DRA
or DDRA, will be accessed via their dedicated address. If bit 2 is clear,

DDRA can be accessed. If bit 2 is set, DRA can be accessed. The state of

this bit is changed by writing it into the CRA from the MPU. This

description is equally applicable to the B side.

m CA2 Control - The CA2 signal can be configured as an input or an output.
In the Color Computer it is used for output only. Bits 3, 4, and 5 of the
CRA control the use of CA2 as shown below.

CA2 configured as an input: (Bit 5 = 0)
Bit 4: Determines the transition that will activate the CA2 input.
Bit 4 = 0: Activate upon seeing a high (logical 1) to low (logical 0)
transition,
Bit 4 = 1: Activate upon seeing a low to high transition.
Bit 3: Allows enabling or disabling of an interrupt generated by CA2.
Bit 3 = 0: Upon activation of CA2, set bit 6 (CA2 flag) of the CRA.
Bit 3 = 1: Upon activation of CA2, set bit 6 (CA2 flag) of the CRA
and send an interrupt to the MPU.

CA2 configured as an output: (Bit 5 = 1) ~
Bit 4 = 1: CA2 outputs a signal corresponding to the state of CRA bit 3.
Bit 3 = 0: CA2 outputs a low.
Bit 3 = 1: CA2 outputs a high.

Bit 4 = 0: CA2 outputs a low upon the next MPU read of the DRA. Bit 3
determines what conditions will cause CA2 to resume
outputting a high. ~

Bit 3 = 0: CA2 returns to a high upon the next active CA1 transition.
Bit 3 = 1: CA2 returns to a high after one MPU clock cycle.

m CB2 Control - The CB2 signal can be’configured as an input or an output.
In the Color Computer it is used for output only. Bits 3, 4, and 5 of the
CRB control the use of CB2 as shown below.

CB2 configured as an input: (Bit 5 = 0)
Bit 4. Determines the transition that will activate the CB2 input.
Bit 4 = 0: Activate upon seeing a high (logical 1) to low (logical 0)
transition.
Bit 4 = 1: Activate upon seeing a low to high transition.
Bit 3: Allows enabling or disabling of an interrupt generated by CA2.
Bit 3 = 0: Upon activation of CB2, set bit 6 (CB2 flag) of the CRB.
Bit 3 = 1: Upon activation of CB2, set bit 6 (CB2 flag) of the CRB
and send an interrupt to the MPU.




CA2 configured as an output: (Bit 5 = 1)
Bit 4 = 1: CB2 outputs a signal corresponding to the state of CRB bit 3.
Bit 3 = 0: CB2 outputs a low.
Bit 3 = 1: CB2 outputs a high.

Bit 4 = 0; CB2 outputs a low upon the next MPU write to the DRB. Bit 3
determines what conditions will cause CB2 to resume
outputting a high.

Bit 3 = 0: CB2 returns to a high upon the next active CBI1 transition.
Bit 7 of the CRB must have been previously cleared.
Bit 3 = 1: CB2 returns to a high after one MPU clock cycle.

Using the PIAs

A PIA can be configured to perform many ways; in the Color Computer,
however, the PIAs are connected to devices that can be used in only limited
ways. Therefore, not all the PIA configurations are used. Presented in this
section are more details on using the PIAs and how they apply to the Color
Computer. Chapter 10 describes the devices and how they are connected to
the PIAs.

m PIA Dedicated Addresses - Each PIA can be accessed by four primary
dedicated addresses and their redundant addresses if the TY bit of the SAM
is clear. (See Table 9-5 for all the possible addresses.) The primary
dedicated addresses for each PIA register are shonw in Table 9-7.

Address PIA Registers

FF00 DRA and DDRA of PIA 1
FFO1 CRA of PIA 1

FF02 DRB and DDRB of PIA 1
FF03 CRB of PIA 1

FF20 DRA and DDRA of PIA 2
FF21 CRA of PIA 2

FF22 DRB and DDRB of PIA 2
FF23 CRB of PIA 2

Table 9-7 Primary Dedicated Addresses of the PIA Registers.

e Initializing the PIAs - The PIAs are initialized by BASIC when the
computer is turned on. This involves setting up DDRA(B), and CRA(B) for
each PIA. The PIAs are first initialized by the RESET signal, activated at
turn on or when the Reset button is pushed. A RESET clears all the
registers in the PIAs. In this state, all the data register bits are
configured to output and interrupts are disabled.

BASIC sets up the data direction and control registers of each PIA
register as shown in Table 9-8.



PIA Register Contents
DDRA of PIA 1 00
CRA of PIA 1 34
DDRB of PIA 1 FF
CRB of PIA 1 35
DDRA of PIA 2 FE
CRA of PIA 2 30
DDRB of PIA 2 F8
CRB of PIA 2 30

Table 9-8 PIA Registers Initailized by BASIC.

One can see, for example, that the A side of PIA 1 has its DRA set up
to input only, and the CRA is set up so CAl interrupts are disabled, the
DRA can be accessed, and CA2 is configured to output a logical Q. In the
Color Computer, the only CA2(CB2) configuration which is used is outputting
a 0 or 1 bit.

E The Interrupt Flags - The interrupt flags are bits 6 and 7 of the control
registers. Bit 7 set in CRA indicates that the CAl input has been
activated. Bit 6 set in the CRA indicates the CA2 input has been activated.
You can not change their state by writing to the CRA(CRB). You should never
see bit 6 set because the only configuration of CA2(CB2) usable in the
Color Computer is the output mode.

When bit 7 of CRA(CRB) is set, it must be cleared for the PIA to be
able to detect the next activation of CAI(CBI1). If CA1(CB1) interrupts are
enabled (bit 0 of the control register.set) the interrupt signal will be
sent to the MPU as long as bit 7 is set. Therefore the interrupt handler
program must clear bit 7 to acknowledge to the PIA that the interrupt was
received. The interrupt flag is cleared by reading the contents of the
respective DRA(DRB). Upon reading the data register, its contents will be
in an MPU register and bits 6 and 7 in the control register are cleared.

VIDEO DISPLAY GENERATOR

The video display generator, or VDG, is the component which. generates a
video signal sent to a television set to produce the picture, The VDG has a
number of display modes; six display text or semi-graphics and. the others
display graphics. The display modes are selected by setting the required
control bits in the SAM and by selecting the VDG operating mode.

Selecting the Display Mode
A display mode is selected by setting the video display starting
address, control bits FO - F6; and the video display mode, control bits
VO - V2, all in the SAM. Also, the VDG operating mode, controlled by five
VDG control bits, must be set.



The video display starting address is normally set by BASIC to $0400,
bit F1 set, for displaying text. Bits FO - F6 can be set to point to any
area in RAM where the video display buffer starts. (See Table 9-1 for the
dedicated addresses used to set or clear bits FO - F6.) '

The video display mode is controlled by the SAM through control bits
YO0 - V2. Their states must be coordinated with the VDG operating mode to
obtain a valid display. (See Table 9-1 for the dedicated addresses of bits
V0 through V2.) '

The VDG operating mode is controlled through bits 3 - 7 of the DRB of
PIA 2. The DDRB of PIA 2 is initialized by BASIC so that bits 3 - 7 of the
DRB are configured for output to the VDG. The VDG operating modes are
selected by writing a control code into the DRB of PIA 2 through its
dedicated address. Valid settings for the video display modes and the VDG
operating modes are shown in Table 9-9. As you can see, Extended Color
BASIC does not take advantage of all the display modes available. The
display mode column uses the abbreviation of the technical name for each
display mode. The display modes indicated as NA are not supported by
Extended Color BASIC.

VDG Op Mode |SAM Control Bits | ‘Display BASIC Display
76543 Y2 V1 VO Mode: | PMODE | SCREEN
0xx0c 00 0 Al text 0,c
0xx0x 0 0 O SG4 text 0,x
Oxxlc 0 0 0 SG6 NA
0xx0x 01 -0 SG8 NA
0xx0x 1 0 0 SG12 NA
0xx0x 1 1 0 SG24 NA
1000c¢ 0 0 1 GIC NA
1001c 00 -1 GIR NA
1010c¢c 0 1 -0 G2C NA
1011c¢ 0 1 1 G2R 0 1,c
1100¢ 1 0 0 G3C 1 lc
1101c¢c 1 0 1 G3R 2 1,¢
1110c¢ 1 1 0 G6C 3 1,c
1111c¢ 1 1 0 G6R 4 1,c

F {’:' ) T el py g

el
Il
]
=]
-+
Q
o
-
(]

n't care  c=color set {(0 or 1)
cdoin ¢
Table 9-9 Available Display Modes.

To select the VDG operating mode, first use the DDRB to configure DRB
bits 3 - 7 for output. Then set bit 2 of the CRB at address $FF23, enabling
access to the DRB at address $FF22. Usually, BASIC has bit 2 of ‘the CRB
set. Finally, put the VDG operating mode code into the DRB at address
$FF22. This whole process is shown in Listing 9-1. The VDG operating mode



selected is GIR, with a color set of 1. At lines 250 - 290 the DRB is
configured for output on bits 3 - 7. At lines 300 - 320, bit 2 of the CRB
is set to enable access to the DRB. At lines 330 - 360, the operating mode
code is put in bits 3 - 7 of the A register, and it is then stored in the
DRB.

250 LDA $FF23 GET CRB

260 ANDA #3$FB CLEAR BIT 2
270 STA $FF23 PUT IN CRB
280 LDA #$F8 DDRB CONFG
290 STA $FF22 PUT IN DDRB
300 LDA $FF23 GET CRB

310 ORA #304 SET BIT 2
320 STA $FF23 PUT IN CRB
330 LDA #398 VDG=G1R, C=1
340 STA $FF22 PUT “IN DRB

Listing 9-1 Selecting the VDG Operating Mode.

One could also rely on the way BASIC initializes the PIAs when setting
a YDG operating mode. Only bits 3 - 7 of the DRB in PIA 2 are set for
output and bit 2 of the CRB is set. (See Table 9-8 to verify this.) One can
simply write the VDG operating mode code into the DRB. Remember that SAM
control bits V2 - V0 and F6 - FO must also be set up. Listing 9-2 is a
program that selects the G2C display mode with color set zero: C = 0. The
display buffer starts at address $0600. This is equivalent to BASIC’s PMODE
1,0 and SCREEN 1,0 display mode.

100 *PROGRAM NAME: PM1
110 *SELECT PMODE 1,0 AND SCREEN 1,0. DISPLAY

120 *BUFFER STARTS AT 0600.
130 dxFxRFhdkhkdRdkkhdkhkkdokh ko k sk ek kkok ek

140 PM1 STA $FFC7 SET FO BIT

150 STA $FFC3 SET V1 BIT

160 LDA #3A0 GET VDG MODE CODE
170 STA $FF22 SEND TO VDG

180 PMA BRA PMA WAIT AND OBSERVE
190 *kkkdksdkdokkdehhdhodek koo idod ks ddededede sk e
200 END

Listing 9-2 The PMI1 Program.

Assemble the source code into memory with the A/IM/WE command and
verify there are no errors. Go to ZBUG and run it by entering GPM1. After
observing the display, press the Reset button to get back to ZBUG.

Using The Display Modes

Each display mode is unique and only one can be in use at any one time,
except Al and SG4. Al and SG4 are the same display mode with different
alphanumeric and semigraphic character sets. When any display mode is
selected, the contents of the buffer is displayed according to the way that




display mode interprets the contents. One may also maintain several
different buffer areas, displaying one at a time as RAM space permits.

The screen is divided into two areas - a border around the outside edge
of the screen, and the area within the border. The outside border can be
controlled least. In some display modes it is always black and in others it
can be green or buff. The rectangular area within the border is the primary
area controlled by the various display modes.

When using a graphics or semigraphics display mode, one determines what
is displayed on the screen by controlling small areas of the screen known
as pixels, or picture elements. A pixel is a small square or rectangular
area of the screen whose color is controlled by the contents of the buffer.
In a semigraphics mode one can control the color of a group of pixels. In a
graphics mode, one can control the color of each pixel. How many pixels the
screen is divided into depends on the display mode. Higher resolution
display modes divide the screen into a larger number of smaller pixels. The
pixels are arranged in rows and columns in a grid. For example, the GIR
display mode divides the screen into 8192 pixels: a grid with 128 pixels
across by 64 vertically.

Following are descriptions of each display mode. In the descriptions
the C bit refers to VDG operating mode control bit 3, and an X indicates
that what state a bit is in is of no significance.

Alphanumeric Text (AI)
BASIC Display Mode: SCREEN 0,C.
Border Color: Black. Buffer Size: 512

Display Format: There are 32 characters to a line and 16 lines to a full

screen. The first character of the top line is determined by the first byte
in the display buffer. Consecutive characters along the line, from left to
right, are determined by the contents of consecutive bytes in the buffer.

Color Set: C=0: Black characters on a green background.
C=1: Black characters on an orange background.

Description: The VDG generates a dot matrix character if its video display
code is in a byte in the buffer. The characters that may be displayed are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 "#$%&’()*,./<>+*-=
< % []. (See Appendix C for their video display codes.)

Semigraphics 4 (SG4)

BASIC Display Mode: SCREEN 0,X.

Border Color: Black. Buffer Size: 512
Display Format: 64 columns, 32 rows



Display (top left corner) Buffer Contents
P, [P, IPs |- - Byte 0 [T N, N; N, Py P; P
Fs [P7 |- - Byte 1 [T N, N; Ng P, P, P, P,

1
P, |Ps
Pe4|Pes5
Poo|Por

4
6

Byte 32 [1 N, Ny Ny Pg, Poo Peo P67J

Z

Color Set:

N
[

- Black

- Green

~ Yellow
- Blue

- Red

- Buff

- Cyan

- Magenta

PX
0
1
1
1
1
1
1
1
1 - Orange

—_ R, OO OO M 7
—_F— OO~ OO X Z
bt Ot O e O = O M

Description: The screen is divided into 2048 pixels; each group of four
pixels is controlled by one byte in the buffer. This is actually the Al
display mode, but the characters displayed are semigraphic. Each group of
pixels (P, - P, e.g.) corresponds to the position of a displayable text
character. Three bits (N,, N;, and N;) control the color of all the

pixels in a group, and four bits (PO, P,, P,, and P;) are used to

turn on (bit set) or off (bit clear) each pixel within the group. When a
pixel is off it is black; otherwise it is the assigned color of that group.
The MSB of a byte in the buffer must be set for a pixel group to be
controlled as described. '

Semigraphics 6 (SG6)
BASIC Display Mode: Not supported.

Border Color: Black. Buffer Size: 512
Display Format: 64 columns, 48 rows
Display (top left corner) Buffer Contents
P, B, Ps [P7 |- - Byteo[1 N p, P, P, Py P, P,
P, [Ps [Ps |Pg Byte 1[1 N P, P, Pg Py P;5 P;
Py Ps Py |Pu1
P108iP100
PaoolF 201 ‘ :
Poo2|P203 Byte 32[1 N Pyog Pygg Pygg Pogr Pagg Pagg
Color Set: C=0 N P_ C=1 N P_

x 0 - Black x 0 - Black

0 1 - Blue 0 1 - Magenta

1 1-Red 1 1 - Orange



Description: The screen is divided into 3072 pixels, and each group of six
pixels (P, - P, e.g.) is controlled by one byte. The N bit controls the

color of all pixels in a group, and bits P, - P; turn on (bit set) or

off (bit clear) each pixel. When a pixel is off it is black; otherwise it

is the assigned color of that group. There are two color sets determined by
VDG operating ‘mode control bit 3 (C). The MSB of a byte in the buffer must
be set for a pixel group to be controlled as described.

Semigrapghics 8 (SG8)
BASIC Display Mode: Not supported.

Border Color: Black. Buffer Size: 2048
Display Format: 64 columns, 64 rows
Display (top left corner) Buffer Contents
P, P{ [Py [Ps] - - Byte 0 [1 N, N, Ny Py P; X X
PsslPas Byte 1 [1 N, N; Ny P, Py X X

Byte 32[1 N, N} Ny Pgy Pge X x]

Color Set: Ny

)
-

x° = Black

0 - Green

1 - Yellow
0 - Blue

1 - Red

0 - Buff

1 - Cyan

0 - Magenta
1

Px
0
1
1
1
1
1
1
1
1 - Orange

—_— - O OO O K Z
r—tv—-oo»—lb—-ooxz

Description: The screen is divided into 4096 pixels; each group of two
pixels (P, - P, e.g.) is controlled by one byte. Bits N, - N,

control the color of all the pixels in a group. Bits P, and P, turn on

(bit set) or off (bit clear) their corresponding pixels within that group.
When a pixel is off it is black; otherwise it is the assigned color of that
group. The MSB of a byte in the buffer must be set for a pixel group to be
controlled as described. ‘

Semigraphics 12 (SG12)

BASIC Display Mode: Not supported.

Border Color: Black. Buffer Size: 3072
Display Format: 64 columns, 96rows



Display (top left corner)

PoPPr PoPs] - -
Pe4|Pes

Buffer Contents

Byte 0

1N2N1N0P0P1X X

Byte 1

1N2N1N0P2P3X X

Pos X x]

Color Set:

()

-

Byte 32 ll N, N; Ny Pgy

N,

x - Black

0 - Green

1 -Yellow
0 - Blue

1" - Red

0 - Buff

1 - Cyan

0 -:Magenta
1

P
0
1
1
1
1
1
1
1
1 - Orange

»—ab—tb—‘b—-ooooxz
— OO = OO X 2

Description: The screen is divided into 6144 pixels, each group of two
pixels (P, - P, e.g.) is controlled by one byte. Bits N, - N,

control the color of all the pixels in a group. Bits P, and P turn on

(bit set) or off (bit clear) their corresponding pixels within that group.
When a pixel is off it is black; otherwise it is the assigned color of that
group. The MSB of a byte in the buffer must be set for a pixel group to be
controlled as described.

Semigraphics 24 (SG24)

BASIC Display Mode: Not supported.
Border Color: Black.

Display Format: 64 columns, 192 rows

Buffer Size: 6144

Display (top left corner) Buffer Contents

Py P1 P lPs]. Byte 0 [1 N, N; Ny Py P, X X
PedPes Byte 1 [T N, Ny N, P, P, X X
Byte 32 {1 Ny Ny Ny Pgy P X )TI




Color Set:

™
[

Ng

X

0

1 - Yellow
0 - Blue

1 - Red

0 - Buff

1 - Cyan

0 - Magenta
1

PX
0
1
1
1
1
1
1
1
1 - Orange

)—H—-‘)—-‘P—OOOONZ
— OO~~~ OO X Z

Description: The screen is divided into 12288 pixels; each group of two
pixels (P, - P, e.g.) is controlled by one byte. Bits N, - N,

control the color of all the pixels in a group. Bits P, and P, turn on

(bit set) or off (bit clear) their corresponding pixels within that group.
When a pixel is off it is black; otherwise it is the assigned color of that
group. The MSB of each byte in the buffer must be set for a pixel group to
be controlled as described.



Graphics 1 with Color (G1C)

BASIC Display Mode: Not supported.

Border Color: If C=0, then green. Buffer Size: 1024
If C=1, then buff.

Display Format: 64 columns, 64 rows

Display (top left corner) Buffer Contents
PoPy Pa P3| - Byte 0 |Nj5 Ngg Nyy Ny Npp Npy Nygo Npgj
Peq|Pes|Pes|Per : :

Byte 16 [ M164 Noss N165 Noss N1es Noss N167 Mooz |

Color Set: C=0 N; N, C=1 N; N,
0 0 - Green 0 0 - Buff
0 1 - Yellow 0 1-Cyan
1 0 - Blue 1 0 - Magenta
I 1-Red 1 1 - Orange

Description: The screen is divided into 4096 pixels; each is controlled by
two bits of a byte in the buffer. One byte controls four pixels. The two
bits N, and Ny determine the color of their pixel, P,. All pixels

are always on: not black. Only their color can be changed

Graphics 1 with Resolution (G1R)
BASIC Display Mode: Not supported.
Border Color: If C=0, then green. Buffer Size: 1024
If C=1, then buff.
Display Format: 128 columns, 64 rows
Display (top left corner)

Py, PPy '?2 P, P, Ps [Ps IPy
P198|P120{P130/P131/P132[FP133[P134]P135] - -
. Buffer Contents
Byte 0 LPO P, P, P, P, P, P, P, |
Byte 16] Py9g P130 P13g P131 P13g P13s Pysgs Prss)
Color Set: - C Py
0 0 - Black
0 1 - Green
1 0 - Black
1 1 - Buff

Description: The screen is divided into 8192 pixels; each is controlled by
one bit of a byte in the buffer. Each byte controls eight pixels. When a



bit is set, its corresponding pixel is turned on and has a color determined
by the C bit. When a bit is clear, the pixel is turned off and is black.
Bit P4 corresponds to pixel Py.

Graphics 2 with Color (G2C)

BASIC Display Mode: Not supported.

Border Color: If C=0, then green. Buffer Size: 2048
~If C=1, then black. ‘

Display Format: 128 columns, 64 rows

Display (top left corner) Buffer Contents
Po Py {Ps [Ps |- - Byte 0 [Ny5 Ngg Ny; Nog Nyg Ngy Nyg Npg |
P128]P120 [P130 [F131] - . .
Byte 32 [Ny198 Noggg Ny199 No120 N1130 No1so N1131 Nogs

Color Set: C=0 N; Nj C=1 N; Ny

0 O - Green 0 0 - Buff

0 1 - Yellow 0 1-Cyan

1. 0 - Blue 1 0 - Magenta

1 1 -Red 1 -1 - Orange

Description: The screen is divided into 8192 pixels; each is controlled by
two bits of a byte in the buffer. One byte controls four pixels. The bits
N4 and NOx determine the color of their pixel, Py All pixels are
always on: not black. Only their color can be changed

Graphics 2 with Resolution (G2R)
BASIC Display Mode: PMODE 0: SCREEN 1,C
Border Color: If C=0, then green. Buffer Size: 1536
If C=1, then buff.
Display Format: 128 columns, 96 rows
Display (top left corner)

Py P P2 [Fs IP. Ps [P IP;
P128P120/P130[P 131|P 132{P133[F 134[F135] - -
— Buffer Contents
Byte 0 [P P, P, Py P, Pg Pg P71
Byte 16 | P128 120 P130 P131 P32 P133 P134 P1ss)
Color Set:  C Py
0 0 - Black
0 I - Green
1 0 - Black
1 1 - Buff



Description: The screen is divided into 12288 pixels; each is controlled by
one bit of a byte in the buffer. Each byte controls eight pixels. When a
bit is set, its corresponding pixel is turned on and has a color determined
by the C bit. When a bit is clear, the pixel is turned off and is black.

Bit P4 corresponds to pixel Py.

Graphics 3 with Color (G3C)

BASIC Display Mode: PMODE 1: SCREEN 1,C

Border Color: If C=0, then green. Buffer Size: 3072
If C=1, then buff. :

Display Format: 128 columns, 96 rows

Display (top left corner) Buffer Contents
Po [Py [P |Pg |- - Byte 0 [Ny Ny Nyy Nog N Noy Nyg Nl
P128|P120[P130| P1sa| - - . .
Byte 32 IN;198 Npjog N1120 No120 N1130 No1zo N1z Nossy]
Color Set: C=0 Ny NO C=1 Ny NO
0 0 - Green 0 0 - Buff
0 1 - Yellow 0 1-Cyan
1 0 - Blue 1 0 - Magenta
11 -Red ; 1 -1 .- Orange

Description: The screen is divided into 12288 pixels; each is controlled by
two bits of a byte in the buffer. One byte controls four pixels. The two
bits N, and Npx determine the color of their pixel, P,. All the

pixels are always on: not black. Only their color can be changed.

Graphics 3 with Resolution (G3R)

BASIC Display Mode: PMODE 2: SCREEN 1,C ~

Border Color: If C=0, then green. Buffer Size: 3072
If C=1, then buff.

Display Format: 128 columns, 192 rows

Display (top left corner)

Po
P1og

P
P

P
P

P
P

P
P

P
P

Py
P1og

4 IPs
196/ F 107

1
193

3
195

6
198

7
199 -

Buffer Contents
Byte 0 EO PP, P, P, P, Pg P/]

P194 P195 P196 P107 P108 P1go]

Byte 32 lP192 Plo3




Color Set: C Py
0 0 - Black
0 1 - Green
1 0 - Black
1 1 - Buff

Description: The screen is divided into 24576 pixels; each is controlled by
one bit of a byte in the buffer. Each byte controls eight pixels. When a
bit is set, its corresponding pixel is turned on and has a color determined
by the C bit. When a bit is clear, the pixel is turned off and is black.

Bit Py corresponds to pixel Ps.

Graphics 6 with Color (G6C)

BASIC Display Mode: PMODE 3: SCREEN 1,C

Border Color: If C=0, then green. Buffer Size: 6144
If C=1, then buff.

Display Format: 128 columns, 192 rows

Display (top left corner) Buffer Contents
Py, [Py [Py [Ps | - - Byte 0 [Ny Ngg Niy Nyp Ny Npy Npjg Nyg |
Pio2|P103|P104|P105} - - - .

192

Byte 32 [N;165Np102 Ni1os No1os N1104 Nozos N1105 Nozos|

Color Set: C=0 Nl NO . C=1 Nl NO
0 0 - Green 0 .0 - Buff
01 - Yellow 0 1-Cyan
1 0 - Blue 1.0 - Magenta
1 1-Red 1 1 - Orange

Description: The screen is divided into 24576 pixels; each is controlled by
two bits of a byte in the buffer. One byte controls four pixels. The two
bits N, and Ny, determine the color of their pixel, Py. All the

pixels are always on: not black. Only their color can be changed.

Graphics 6 with Resolution (G6R)

BASIC Diaplay Mode: PMODE 4: SCREEN 1,C

Border Color: If C=0, then green. Buffer Size: 6144
If C=1, then buff.

Display Format: 256 columns, 192 rows



Display (top left corner)

P, P; Py Ps Pa Ps 1P |P7
Pose|P257|Pa58|F 250[P 260| P 261|P262|P263) © -
T Buffer Contents
Byte 0 [P P, Py P; P, P, Py P, l
Byte 32 IP256 257 P258 P250 P20 P61 Posa Pres)
Color Set: C Py
0 O - Black
0 1 - Green
1 0 - Black
1 1 - Buff

Description: The screen is divided into 49152 pixels; each is controlled by
one bit of a byte in the buffer. Each byte controls eight pixels. When a
bit is set, its corresponding pixel is turned on and has a color determined
by the C bit. When a bit is clear, the pixel is turned off and is black.

Bit Py corre§ponds to pixel P,.

A Graphics Display Exercise

Listing 9-3 is an example of using the G6R graphlcs display mode in an
assembly language program. The items that must be set up are: the SAM
control bits, F6 - FO and V2 - V0, and the VDG operating mode. The program
establishes the video buffer starting at address $1000. All bytes within
the buffer are cleared, resulting in a black screen. Then a green
rectangular outline is drawn in the upper left corner of the screen.

100 *PROGRAM NAME: GRPH

110 *THIS PROGRAM WILL SET UP 'DISPLAY MODE G6R.
120 *THE VIDEO DISPLAY BUFFER :WILL START AT: HEX
130 *ADDRESS 1000. THE SCREEN 1S SET .TO ALL BLACK
140 *AND A RECTANGLE IS DRAWN IN THE UPPER LEFT

150 *CORNER.
160 Hikkkkikkhkkikkihihhhhkkkhkkhhhkhrhhikdkhkriri

170 GRPH  STA $FFC8 CLEAR F1

180 STA $FFCD SET F3

190 STA $FFC5 SET V2

200 STA $FFC3 SET V1

210 LDA #SFO VDG OP MODE

220 STA $FF22 SET VDG OP MODE
230 CLRA GET 00

240 LDX #$1000 START OF BUFFER
250 GRA STA X+ CLEAR BUFFER
260 CMPX #$2800 END OF BUFFER?
270 BLO GRA IF NOT,DO AGAIN
280 LDX #$1104 START OF TOP LINE
290 LDA #$FF BUFFER CODE

300 GRB STA X+ PUT IN BUFFER
310 CMPX #81110 END OF LINE?

320 BLS GRB IF NOT,DO AGAIN



330 LDX #$1604 START OF BOT LINE

340 GRC STA X+ PUT IN BUFFER

350 CMPX #31610 END OF LINE?

360 BLS GRC IF NOT,DO AGAIN

370 LDA #380 LEFT 'LINE CODE

380 LDX #31124 START OF LEFT LINE
390 GRD STA ,X PUT IN BUFFER

400 LEAX 32,X GOTO NEXT LOWER PIXEL
410 CMPX #$1604 END OF LINE?

420 BLO GRD IF NOT,DO AGAIN

430 LDA #3$01 RIGHT LINE CODE

440 LDX #3$1130 START OF RIGHT LINE
450 GRE STA X PUT IN BUFFER

460 LEAX 32,X NEXT LOWER PIXEL

470 CMPX #3$1610 END OF LINE?

480 BLO GRE IF NOT,DO AGAIN

490 GREND  BRA GREND WAIT AND OBSERVE

SO0 *dkwddkdkdedok ook kiomdkdoiookkoiok fok ook ootk koo ok ok
510 END

Listing 9-3 The GRPH Program.

In the source code lines 170 and 180 set the starting address of the
video buffer area to $1000. Lines 190 and 200 set the proper SAM video
control mode for the G6R display mode. Lines 210 and 220 set the VDG
operating mode. Lines 230 - 270 clear the buffer area, resulting in a black
screen. Lines 280 - 480 draw the four sides of the rectangle. At line 490
the program is in a loop that lets the operator view the display.

Assemble the source code in memory with the A/IM/WE command and
verify there are no errors. Go to ZBUG and run it by entering: GGRPH. To
get back to ZBUG after viewing the display press the Reset button.

INTERRUPTS v

In this section are described the interrupt sources and how to control
their operation. The IRQ interrupt originates from devices in the Color
Computer, and the NMI and FIRQ from outside. IRQ and FIRQ are sent to the
MPU from the PIAs. It is imperative that one knows how to use the PIAs to
control the IRQ and FIRQ interrupts.

Interrupt Sources

The IRQ and FIRQ interrupts are sent to the MPU from PIAs 1 and 2. The
IRQ interrupt sources are internal to the Color Computer, and are connected
to CAl and CBI1 of PIA 1. The FIRQ interrupt sources are external to the
computer and are connected to CAl and CB1 of PIA 2. The NMI interrupt
signal line is connected to the ROM cartridge slot. Fig. 9-6 is a
simplified block diagram showing the connections between the PIAs, MPU, and
the interrupt sources of the Color Computer. One can see there are a total
of five signals which can be used to generate an interrupt. Two signals can
generate an IRQ interrupt, two can generate an FIRQ interrupt, and one
generates an NMI interrupt.
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Fig. 9-6 Block Diagram of the Interrupt Sources.

m IRQ Interrupts - PIA 1 is connected to the IRQ interrupt signal going to
the MPU. At CAl, an electrical signal from the VDG creates a transition
from a high to a low (or from a low to a high) once every 63.5
microseconds, or 15,478 times a second. This signal is always present and
can be used to generate an IRQ interrupt at its repetition rate. At CB1 is
an electrical signal from the VDG that creates a transition from a high to
a low (or from a low to a high) once every 16.7 milliseconds or 60 times a
second. The signal at CB1 is always present and can also be used to
generate an IRQ interrupt at its repetition rate.

It appears that the signal at CA1 would cause an interrupt too often to
be of much use. The MPU requires about 20 microseconds to perform the IRQ
interrupt sequence and another 15 microseconds for the RTI instruction at
the end of the interrupt handler. This leaves about 28 microseconds for the
interrupt handler to perform some task before the interrupt occurs again.
This is not enough time to perform very much; about 4 to 10 instructions.
The signal at CB1, when the PIA is initialized, causes an interrupt at the
fixed rate of 60 times a second, a much more useful rate.

= FIRQ Interrupts - PIA 2 is connected to the FIRQ interrupt signal going
to the MPU. The READY signal from the serial I/O port is

connected to CAl. A device connected to the serial I/O port, when it goes
from a non-ready state to a ready state, causes the READY signal

to go from-a high to a low. If PIA 2 is configured to sense a high-to-low
transition at CAl, an FIRQ interrupt will be generated when the device
becomes ready. However, not all devices send a READY signal to the
computer. Normally, this signal means the device is turned on, not busy




doing something, and is ready to transfer data to or receive data from the
computer. If PIA 2 is configured to sense a low-to-high transition at CAl,
an FIRQ interrupt will be generated when the device becomes non-ready.
The CBI1 pin of PIA 2 is connected to pin 8 of the ROM cartridge
connector. A cartridge plugged in may cause an FIRQ interrupt if CB1 is
configured to sense it. The ROM cartridge slot is described in Chapter 10.

® NMI Interrupts - The NMI interrupt signal line to the MPU is connected
directly to pin 4 of the ROM cartridge slot. Thus, a cartridge may directly
cause an NMI interrupt. Note that an NMI interrupt does not require any
PIAs to be configured, and that it is not maskable. The interrupt sequence
is initiated by a temporary low signal on pin 4 of the ROM cartridge slot
connector. The ROM cartridge slot is described in Chapter [0.

Controlling PIA Interrupts

A PIA must be initialized to send an interrupt to the MPU. This is done
by setting or clearing bits in the control registers, CRA and/or CRB,
through their dedicated addresses. They are bits 0 and 1 of control
register A or B, which control interrupts sensed by CAl or CBI1. Table 9-10
shows the dedicated addresses to use to access the control registers to
control the IRQ and FIRQ interrupts.

Int. Type | Signal |Dedicated Address
IRQ CAl FFO1
CBl1 FF03
FIRQ CAl FF21
CB1 FF23

Table 9-10 Dédicated Addresses of PIA Control Registers.

If bit 0 of CRA(B) is clear, that half of a PIA will not generate an
interrupt when the CA(B)1 input is activated. If bit 0 is set, that half of
a PIA will generate an interrupt when the CA(B)I input is activated. In
either case, bit 7 of CRA(B) is set when the CA(B)1 input is activated.

If bit 1 of CRA(B) is clear, the CA(B)1 input will be activated when it
sees a high-to-low transition. If bit 1 of CRA(B) is set, that input will
be activated upon seeing a low-to-high transition.

After a half of a PIA (A or B) has sensed an activating transition at
CA(B)I1, bit 7, the flag bit of the CRA(B) will be set, and an interrupt may
be sent to the MPU depending on the state of bit 0 of the respective
control register. Then the flag bit must be cleared for that half of the
PIA to be able to sense another CA(B)I activation. Clearing the flag bit
also causes the PIA to stop sending an active interrupt signal to the MPU
if bit 0 of the control register is set. If this is not done, the MPU will
be interrupted again as soon as the F or I bit of the CC register is



cleared. The flag bit is cleared by having the MPU read from the
corresponding data register (DRA or DRB).

Programming Responsibilities

A program using interrupts must initialize the PIA control register
(either CRA or CRB) for the MPU to be able to receive an IRQ or FIRQ
interrupt. This entails setting or clearing bit 1 and setting bit 0 of a
control register. However, take care not to modify the other bits in the
control register if they are being used to control another condition. The
progam must also ensure the flag bit is clear, by reading from the data
register of the half of the PIA to be used to generate interrupts. Listing
9-4 provides instructions that will set bit 0 of the CRB of PIA 1 and
ensure the flag bit is clear, allowing IRQ interrupts to be sensed at CB1
at the rate of 60 per second.

LDA $FFO3 READ CRB

ORA #305 SET BIT 0+2

STA $FF03 STORE 'IN .CRB

LDA $FFO2 READ DRB(CLR FLAG BIT)

Listing 9-4 Enabling the IRQ Interrupt.

The LDA reads the contents of the CRB and the ORA sets bits 0 and 2.
Bit 2 set allows access to the data register. STA stores the result back in
the CRB. The last LDA reads the contents of DRB, clearing the flag bit.

An interrupt handler has the responsibility of clearing the
corresponding flag bit in the control register before returning to the
interrupted program. Again, this is done by reading the contents of the
corresponding data register. An example of a CB1-PIA 1 interrupt handler
performing this function and returning is shown below:

LDB $FF02 READ DRB(CLR FLAG BIT)
RTI RETURN

This procedure was performed in the SAMPLI program at the end of Chapter 7.
At lines 320 - 340 the PIA is initialized, and at lines 1630 and 1640 the
interrupt handler clears the flag bit and returns.

The program responsibilities required for using interrupts from a PIA
are in addition to other program duties, such as establishing an S stack,
setting up the vector jump instructions, and enabling or disabling, via the
I and F bits of the CC register, the MPU’s reception of the interrupt
signals. All the duties involved in using interrupts from CB1-PIA 1 are
shown in a skeleton program in Fig. 9-7. To use interrupts from the other
side of PIA 1 or from PIA 2, the dedicated address must be changed to
access the corresponding PIA registers.

252




ORG $2000
ORCC #3$50 SET I AND F BITS
LDS #30+NSTK ESTABLISH STACK
LDA #$7E JUMP OP CODE
STA $010C PUT IN VECT TABL
LDX #INHDL ADDR OF INT HANDLER
STX $010D PUT IN VECT TABL
LDA $FFO03 READ CRB
ORA #305 SET BITS 0+2
STA $FFO3 PUT IN CRB
LDA $FFO2 ‘READ DRB(CLR FLAG)
ANDCC #S$EF CLEAR 1 BIT

NSTK RMB 30 STACK AREA

INHDLR - INT. HANDLER
LDA $FF02 READ DRB(CLR FLAG)
RTI RETURN

Fig. 9-7 A Skeleton Program Using IRQ Interrupts.

In contrast, the NMI interrupt comes directly to the MPU from the ROM
cartridge slot and not through a PIA. Thus, the programming
responsibilities exclude all references to any PIAs unless there is a PIA
in the cartridge.



CHAPTER 10

Technical Details

This chapter will describe the rest of the Color Computer’s internal
devices and cartridge connector. The internal devices are used to input
and/or output data to cassette, any device connected to the serial I/O
port, or joysticks, and to generate sound. Knowing how to control and use
the internal devices lets one write subroutines to input or output data or
perform functions with non-standard peripheral equipment connected to the
computer.

The cartridge connector provides access to the main buses: the data
bus, address bus, part of the control bus, and various other signals. A
cartridge plugged into the connector can add more ROM, RAM, PIAs, or any
other desired components. An example is the disk units, which are connected
via the cartridge connector. A cartridge could also contain a sound
synthesizer to.increase sound-making capabilities, or a speech synthesizer
to provide voice. :

INTERNAL DEVICES

All the internal devices are controlled through the PIAs. Any device
that can be used or controlled is connected by wiring to PIA signals: the
data path bits PA(B)0 - 7, CA(B)1, and/or CA(B)2 signals. A PIA that sends
data or a control code to a device must have those bits .configured for
output. A PIA that receives data or signals from a device must have those
bits configured for input. A data register’s bits are configured with the
respective data direction register. A ‘PIA that sends a CA2 or CB2 signal to
a device must have configured that signal to output by setting up bits 3,
4, and 5 of the respective control register. No devices in the Color
Computer send signals to any CA2 or CB2. Any PIA that receives a signal at
CA1l or CBI must have configured them to detect the desired transition and



have enabled or disabled their interrupt by setting up bits 0 and 1 of the
respective control register. No devices receive signals from CAl and CBI1 of
any PIA, thus PIAs can only input from CAl and CBl. This will all become
evident later as the diagrams of the PIAs and other devices are presented
and described.

The connections between the PIAs and the other devices are shown in
simplified block diagrams in Figs. 10-1, 10-2, and 10-3. Each data line or
signal line has an arrow on it to indicate the normal flow of data. The
connectors (jacks) shown in the diagrams are drawn as they appear when
viewed from the rear of the computer, except for the cartridge connector
which is drawn as viewed from the right side. One may purchase Radio
Shack’s TRS-80 Color Computer Technical Reference Manual, catalog number
26-3193 (or the Color Computer 2 service manual), for more detailed
electronic schematics.

« In the diagrams and descriptions, signals are described as a voltage. A
volt is a unit of measurement of electric potential, in the same way a foot
is a unit of measurement of distance. Both measure a difference between two
points. In the descriptions of signals, a signal’s voltage is defined as
the voltage difference between that signal and the computer’s frame or
chassis. An electrical connection to the chassis, or ground as it is also
called, is represented by the + symbol. A high signal has a voltage of
four to five volts. A low signal has a voltage of approximately zero volts.

The Keyboard

The keyboard is composed of 52 switches, with one switch under each
key. The wiring to and from the switches is arranged as a grid of columns
and rows, shown in Fig. 10-1. Data paths A and B of PIA 1, except PA7, are
used to determine which key, if any, is currently being depressed. When a
key is depressed the switch beneath it is turned on, causing a connection
between a PBx output and a PAx input.

The keyboard is interrogated by sending out a low (a zero bit) on only
one B side data line, and sending out highs (one bits) on all the other B
side data lines. Then the A side data register of PIA 1 is read. Reading
any zero bit except PA7 indicates that a key has been depressed in the -
column with a low signal. This process is repeated by sequentially sending
out a low to each column and reading the DRA to see if -any or which key is
depressed. The ROM POLCAT subroutine does this and calculates the ASCII
code of the depressed key. :

PA7 is not connected to the keyboard. Writing $F7 into the DRB will set
data line PB3 low and all the others high. If the S key is depressed, the
MPU would read a binary value of x11111011, or DRA2 clear, from the DRA.
DRA7 may be in any state. If the DRA is read when no key is depressed, the
binary value read will be x1111111. This is because the PAQ - PA6 inputs
sense a high if nothing is connected to them; this being the case when no
key is depressed.
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Figure 10-1

-4 indicates a low.

Keyboard, YDG, and Joystick Fire Button Diagram.

Joystick Fire Buttons

Each joystick has a fire button which actuates a switch. When the
button is depressed, the switch is closed, making an electrical connection
to a low. In Fig. 10-1, the left joystick fire button is connected to PAl
of PIA 1, and the right to PAO. When a fire button is not depressed the



corresponding data line is high. While a fire button is depressed the
corresponding data line, PAO or PA1, is low. Thus, one can simply read the
DRA of PIA 1 to see if either button is depressed. Bit 0 clear indicates

the right fire button is depressed and bit 1 clear indicates the left

button is depressed. The data lines, PA1 and PAO, are shown connected to
pin 4 of their respective joystick jacks.

The VDG And IRQ Interrupts

The VDG, shown in Fig. 10-1, receives its operating mode from PIA 2,
bits PB3 - PB7. These bits must be configured for outputting. A code
written into bits 3 - 7 of the DRB will be sent to the VDG, setting its
operating mode. The VDG sends out a video signal that goes to the
television set to produce the picture,

The VDG also outputs two signals, HS and FS, connected to CA1 and CBI1
of PIA 1. The HS signal oscillates or toggles from a high to a low and back
again once every 63.5 microseconds. The FS signal oscillates or toggles
from a high to a low and back again once every 16.7 milliseconds. These two
signals are the sources of the IRQ interrupts. CAl and/or CB1 can be
configured via their respective control register to generate an interrupt
upon an active transition of the HS and/or FS signal.

Serial 1/0 :

Serial I/O, or RS-232, data is transferred through PIA 2 to the serial
I/O jack on the Color Computer, shown in Fig. 10-2. Data is sent out on bit
PA1, where it is inverted by a device that performs the Jogical NOT
function. The NOT component sends out a signal of a state opposite the
input state. Thus, it sends out a low when a high is sent to it and it
sends out a high in response to a low input. Writing a 1 bit to PA1 results
in a 0 bit appearing at pin 4 of the serial I/O jack.

Input data from the serial I/O jack is read through PBO of PIA 2.

Before the data reaches PBO, it is inverted by a NOT component; whatever
state is read by PBO is actually the reverse of what is at pin 2 of the

jack. Before any data is to be transmitted, PA1 must be configured for
output and PB0 for input.

The READY signal is inverted and then goes to CAl of PIA 2. CAl
should only input and may be configured via the CRA to sense a high-to-low
or low-to-high transition. When a device connected to the serial I/O port
becomes ready, CAl will see a high-to-low transition. When a device becomes
non-ready, CAl will see a low-to-high transition.

The subroutine in BASIC ROM that uses the serial I/O port accommodates
only printers and assumes a different signal assignment than just
described. That signal assignment is: pin 1 is not used, pin 2 (RS232IN) is
connected to the printer s ready signal, pin 3 is ground, and the data to
be printed is sent on pin 4 (RS2320UT).

The NOT components are one-way devices. The signal can flow only into



the broad side of the triangle and out the pointed end. For example, if one
tries to input on PA1l, one will not read the signal at pin 4 of the jack.
These components also transform the electrical signal from within the
computer to RS-232 standard electrical levels.

PIA 2 Serial 1/0

Jack
PA1 >
CRA-FF21 |

RS2320UT

DRA/DDRA-FF20
CA1 %I
CA2 \I]

CB1

CRB-FF23
DRB/DDRB-FF22

PB2 ——(—————————-1
PBO—<

zl
o

=] .
U

1 RSZ232IN

PIA 1 32 p ‘__[_

/64K 16K = Cassette
+5V | 7 @ Jack

CRB-FF03 Cassette
DRB/DDRB-FF02 Motor Relay
PB7

¥

1 Cart. Connector 48 1

— indicates -a-low.

Figure 10-2
Serial I/O Port, Cassette Motor, etc.

Cassette Motor

The cassette motor is controlled with CA2 of PIA 2. CA2 must be
configured to output a high or a low to control the cassette motor relay.
When CA2 sends a high, the switch in the relay closes and completes the
circuit for the cassette motor. When CA2 sends a low, the switch opens and
the motor stops. The switch is connected betwen pins 1 and 5 of the
cassette jack, shown in Fig. 10-2.

Memory Size Sense
The memory size is sensed with PB2 of PIA 2. PB2, configured as an



input, is read after power turned on to determine the position of the
memory size switch and indicate the type of memory integrated circuits
within the computer. The switch is actually a connector positioned at the
time of manufacture or when the memory size is changed. This switch is
shown in Fig. 10-2. To read the switch position, alternating zeros and ones
are sent out on PB7 of PIA 1 (PB6 in the CoCo 2). Then PB2 of PIA 1 is read
several times. If PB2 is always clear, the switch is in the 4K position. If
PB2 is always set, the switch is in the 16K position. If PB2 alternates
between set and clear, the switch is in the 32/64K position. Based on the
read switch position, the initializing program in BASIC ROM will set up the
memory size control bits, MO and M1, within the SAM.

Cassette Cart. Connector Right Joystick Left Joystick
Jack Jack Jack
(s 357 |
4 2
3
ATTN >
PIAZ2 > = b
PA7 I
PAG | . | of 1] o[ 3] 1 of 1] 2] 3
CRA-  PA5 D/A [ / g o]

FF21  PA4 frm CONV A f ! 8
DRA/ PA3 p—> 1, [ Selector
DDRA- PAZ |—> Switch

FF20  PAO [—e @r I— L

cB2 > I\
CRB-FF23
DRB/DDRB- | A |
FF22 | I——S—}-
PB1 p—> ]
Sound to - +
TV COMPARATOR
PIATH
PA7 [—&
CRA-FFO1
DRA/ CA2 >
DDRA-FFOO
CB2 >
CRB-FF03
DRB/DDRB-
FFO2 —= indicates a low.
Figure 10-3

Cassette, Joysticks, and Sound Signal Flow.



CB1 of PIA 2 :

-CBI is connected to pin 8 of the cartridge connector. Since CB1 can
only be an input, it can only sense a signal sent to it from the cartridge.
CBI can be configured via the CRB to sense a high-to-low or low-to-high
transition and to generate an FIRQ interrupt.

Component Operation

Fig. 10-3 shows the components and their interconnections used to input
from the cassette and the joystick positions and to output to cassette and
generate sound. Many of the components may not be familiar to you, so they
are described here,

m Digital-To-Analog Converter - The digital-to-analog, or D/A, converter is
connected to bits PA2 - PA7 of PIA 2. The D/A converter, upon receiving a
six-bit straight binary value, generates an analog voltage of a magnitude
proportional to the magnitude of that binary number. An analog voltage is
one which can be varied by incremental amounts over a specified range. This
is unlike a digital voltage, which must be at one of two levels - zero

volts = a 0 bit, or +3 volts = a 1 bit.

Analog voltages are typically represented on a graph; the vertical axis
represents the magnitude of the voltage and the horizontal axis represents
time. Fig. 10-4 is a graph of the voltage from a nine volt battery being
used to power a portable radio.

Voltagea
10 -
8

O MR O

.

Ohr. 2hr  4hr ~6hr 8hr 10hr . Time

Fig. 10-4 Battery Voltage vs Time,

At time 0, the battery is fresh and generates the full nine volts. As
the radio is continuously played, the battery is slowly depleted and
generates a lower voltage. At about the eighth hour, the battery becomes
exhausted and can only generate a diminishing voltage. Fig. 10-4 shows an
analog voltage varying continuously over a period of time. The use of
analog voltages becomes apparent when a waveform is used to represent
something else by analogy. For example, the waveform in Fig. 10-4 could
represent ones energy level thoughout the day. The vertical axis would
represent the energy level and the horizontal axis would represent time.
See how the energy level drops off at the end of the day?



To use the D/A converter, bits PA7 - PA2 must be configured for output.
Bit PA7 is the most significant bit of the six-bit number, and PA2 is the
least. The D/A converter generates a voltage, within a range of 0 to +4.5
volts, proportional to the binary value sent to it. When each bit is set,
they cause the D/A converter to generate a specific voltage. The D/A
converter adds together all the voltages to develop the output voltage.

Table 10-1 shows the voltages that each set bit will add to the final
value. If a bit is clear, it contributes nothing to the output voltage.

Bit Voltage
PA7 2.25
PAG6 1.125
PAS 0.563
PA4 0.281
PA3 0.14
PA2 0.07

Table 10-1 D/A Converter Bit Voltages.

To calculate the voltage generated by a six-bit value, add together the
voltages each set bit generates from Table 10-1. For example, a six-bit
value of 011010 would generate 1.828 volts. This is demonstrated below:

PAG6 set = 1.125
PAS set = 0.563
PA3 set =0.140
Output voltage = 1.828

The range of output voltages is from zero, all bits clear, to +4.5, all
bits set.

The D/A converter can be used to generate a waveform that varies with
time by writing different values to bits 2 - 7 of the DRA of PIA 2. For
example, sequentially writing the hexadecimal values 00, 20, 40, 80, and 00
generates the waveform in Fig. 10-5. The time scale of the horizontal axis
depends on how often each consecutive value is written to the DRA. It could
be determined by how many instructions were executed between each write to
the DRA.

Yoltage
2.25

1.125
0.563
0.0 >

>

t0 t1 t2 t3 t4 Time

Fig. 10-5 A Waveform Generated by the D/A Converter.



m Selector Switch - The selector switch is a dual unit composed of two
four-position switches, shown in Fig. 10-3. One half is designated the A
switch, and the other the B switch. The position of both switches is
controlled by the CA2 and CB2 signals from PIA 1. CA2 and CB2 must be
configured for output so a control code can be sent to the selector switch.
The four possible combinations of the states of CA2 and CB? put both
selector switches in one of their four possible positions. The

corresponding codes and switch positions are shown in Table 10-2.

PIA 1
CB2 | CA2 | Switch Position
0 0 0
0 1 1
1 0 2
1 1 3

2 /
Table 10-2 Selector Switch Control and Positions.

The selector switches route various analog voltages to desired
destinations. Selector switch A also has a master switch controlled by CB2
of PIA 2. When the master switch is on, the analog voltage to which
selector switch A is positioned will flow to its destination. When the
master switch is off, no analog voltage selected by switch A is sent out.
CB2 of PIA 2 must be configured to output to control the master switch. A
high from CB2 turns the master switch on and a low turns it off.

m Comparator - The comparator compares the magnitude of two analog voltages
and indicates which is greater. The comparator has two inputs labelled +)
and (-). If the voltage sent to the (+) input is higher (more positive)

than the voltage at the (-) input, the comparator outputs a high. If the
voltage sent to the (-) input is the higher of the two, the comparator
outprts a low. As presented in Fig. 10-3, the (-) input is connected to the
output of the D/A converter and the (+) input is connected to the B
selector switch. The B selector switch is used to select different analog
voltages to be compared with the output of the D/A converter. The
comparator is used in conjuction with the D/A converter to form a
successive approximation analog-to-digital converter. This is described in
more detail in the joystick section later in this chapter.

m Attenuator - An attenuator is connected between the output of the D/A
converter and pin 4 of the cassette jack, shown in Fig. 10-3. This is the
path an analog voltage takes on its way to the cassette to be recorded.
The attenuator reduces the magnitude of the range of the analog voltage
going to the cassette to approximately a range of zero to plus one volt;
most cassettes are designed to accept this voltage range. One could also




connect pin 4 of the cassette jack to the auxillary input of a high
fidelity receiver or amplifier. This way, sound generation need not be
limited to the TV.

Cassette I/0

Data is transferred to the cassette serially via pin 4 of the cassette
jack, and in via pin 2. The cassette recorder is meant to record or
playback an audio analog signal, an analog voltage of a frequency within
the range of human hearing. The ROM subroutines, which record data, use the
D/A converter to generate a voltage with a sinusoidal waveform to be
sent to the cassette. A sinusoidal waveform is a pure or single tone. The
waveform has the same shape as a graph of the sine of an angle versus the
angle shown in Fig. 10-6.

Sine 1 -+

5=

D 90 - 180 270 36 Angle
-5 4

-1 4

Fig. 10-6 A Plot of the Sine of an Angle vs the Angle.

The D/A converter is fed a series of values at a specific rate so it
generates a waveform similar to a sine wave; the output voltage varies from
0 to +4.5 volts. Since the D/A converter can not generate a voltage at
every value within its range, but only in steps of 0.07 volts, the waveform
is constructed of discrete values. A typical sine wave generated by the D/A
converter is shown in Fig. 10-7.

i 0
Voltage 4.5 4 : i, U
3.375 4 @:ﬁz 2071
2.25
1.125 + cnin,
‘ 0 ~1,0 P 0
t0 tl 12 t3 .. t4 - Time

Fig. 10-7 Sine Wave Generated With the D/A Converter.




This figure shows the signal the BASIC ROM cassette write subroutine
generates with the D/A converter and sends through the attenuator to the
cassette. The period of time from t0 to t3 is one complete cycle. The
length of the time period determines the pitch or frequency of the tone.

To record a bit, a voltage with a frequency of 1200 or 2400 hertz
(cycles per.second) is generated with the D/A converter and sent to the
cassette recorder. If the bit is clear, the frequency is 1200 hertz; if the
bit is set, it is 2400. A recording of data is made up of two tones; the
pitch of the tone indicates the state of a bit. If the cassette is
unplugged from the computer, a data file recording can be played back and
you will hear the rapidly alternating tones.

Cassette data comes serially into PAO of PIA 2 after passing through a
NOT device. The analog voltage received from the cassette is a sinusoidal
waveform similar to what was recorded. The difference is that the voltage
varies symmetrically about zero: thus, the waveform appears similar to that
in Fig. 10-7 - the voltage ranges between an equal positive and negative
value. The amplitude of the received voltage is adjusted by the volume
control of the cassette. The NOT device sends a low to PAO if it sees an
analog voltage greater than one volt. An analog voltage of less than one
volt from the cassette results in a high being sent to PAQ. PAO must be
configured for input and read frequently to see how often the playback
voltage changes from greater than to less than one volt. This way the
frequency can be found and the state of the bit that tone represents can be
determined.

Joystick Positions

Each joystick sends two analog voltages that vary according to its
position to the computer. One voltage from a joystick varies in proportion
to its forward and backward position and the other to its left and right
position. The forward/backward voltage comes in pin 2 and the right/left
voltage comes in pin 1 of the joystick jack, shown in Fig. 10-3. The
voltage ranges from zero, joystick full forward or leftward, to 4.5 volts,
full backward or rightward. The position of a joystick is determined by
selecting each output with the selector switch, and measuring the voltage.
The voltage is measured by converting it to a digital value with the
successive approximation analog-to-digital, or A/D, converter.

The successive approximation A/D converter is composed of the D/A
converter, the comparator, and a program. An analog voltage to be converted
to a digital number is sent to the (+) input of the comparator. The B side
of the selector switch is used to select one of the four voltages to be
digitized. Selector switch positions 0 and 1 select the left/right and
forward/back voltages from the right joystick, and positions 2 and 3 select
the corresponding voltages from the left joystick.

A voltage is digitized by outputting, through the D/A converter, a
successively incremented voltage. After each higher voltage that is sent,




the output of the comparator (PA7 of PIA 1) is read. PA7 clear indicates
the voltage just sent by the D/A converter is marginally higher than the
analog voltage at the (+) input of the comparator. At this point, the value
written into the DRA of PIA 2, (sent to the D/A converter) is the digital
equivalent of the analog voltage. The process requires that zero volts

first be sent through the D/A converter to the (-) input of the comparator,
and that voltage then be increased until the comparator indicates it is

just a little higher than the analog voltage. This is the process of
successive approximation.

Listing 10-1 is a program which reads the left/right position of the
left joystick and displays a hexadecimal value that corresponds to its
position in the lower right corner of the screen. The program determines a
joystick position in a way very similar to the way the JOYIN ROM subroutine
works. The displayed value is actually the digital equivalent of the analog
voltage outputted by the joystick.

100 *PROGRAM NAME: LFJY
110 *THIS PROGRAM WILL DIGITIZE THE LEFT/RIGHT
120 “*ANALOG VOLTAGE OF THE LEFT JOYSTICK USING

130 *SUCCESSIVE APPROXIMATION.
140 Fokdikdokkodkdkiokiokkiiohdhkkhhkdkddokkd ke ko dokd ik

150 LFJY LDA #3$3C GET CRB CODE

160 STA $FFO3 SET CB2

170 LDA #3$34 GET CRA CODE

180 STA $FFO1 CLEAR CA2

190 LFA CLRB GET 0 VOLTS

200 LFB STB $FF20 SEND TO D/A

210 LDA $FFO0 READ COMP OUTPUT
220 BPL LFC BRANCH IF PA7=0
230 ADDB #304 INC VOLTAGE

240 CMPB #$FC MAX VALUE ?

250 BEQ LFC = - FORCE END IF MAX
260 BRA LFB DO AGAIN .
270 LFC LDA #304 GET SHIFT AMOUNT
280 MUL MS IN A,LS IN B
290 ADDA #370 CONVERT TO :VIDEO
300 STA $5FE PUT ON SCREEN
310 LDA #3$10 SHIFT AMOUNT

320 MUL LS IN A

330 CMPA #3509 GREATER THAN 9?
340 BHI LFD BRANCH IF SO

350 ADDA #370 CONV TO VIDEO
360 STA $5FF PUT ON SCREEN
370 BRA LFA DO AGAIN

380 LFD ADDA #3$37 CONV TO VIDEO
390 STA $5FF PUT ON SCREEN
400 BRA LFA DO AGAIN

410 FkkRkdiokkkdk kR ik khdih ki dhiok ki dokdkdeon Kk ok kk ko
420 END

Listing 10-1 The LFJY Program.

Lines 150 - 180 set CB2 and clear CA2, selecting position 2 of the
selector switch. Lines 190 - 240 are the successive approximation ‘loop. The



B register is first cleared and written to the D/A converter. If PA7 of PIA
1 is clear at lines 210 and 220 the conversion process is over. If not, the
value in bits 7 - 2 of the B register is incremented by one by adding four
to the contents of B at line 230. Lines 250 - 370 convert the six-bit value
in B to two video codes for presentation on the screen. The six bits in B,
bits 7 - 2, are shifted to the lower six bits so the range of the
hexadecimal value is from 00 to $3F. Assemble the source code with the
A/IM/WE command and verify there are no errors. Go to ZBUG and run it by
entering: GLFJY. You will see two hexadecimal digits at the lower right
corner of the screen vary as the left joystick is moved from side to side.

Other devices can also be connected to a joystick jack and their output
voltage digitized. The successive approximation technique in Listing 10-1
resolves an analog voltage to six bits of accuracy. Thus, the digital value
of a voltage is accurate to within approximately 0.07 volts.

Sound ;

Sound through the TV can come from four sources: the D/A converter, the
cassette, a cartridge, and PBI of PIA 2. Selector switch A selects one of
the first three sources. Position 3 of selector switch A is connected to a
low and is used when no sound is desired. This can be seen in Fig. 10-3.

Sound from the D/A converter is selected by setting selector switch A
to position 0 and turning on the master switch by setting CB2 of PIA 2
high. A waveform is generated by sending successive digital values to the
D/A converter. The shape of the waveform determines the type of sound. One
should consult an introductory physics book to learn about the
characteristics of various sounds. The output, through selector switch A
and the master switch, is sent to the TV and heard from its loudspeaker.

One shouldn’t forget to turn up the volume on the TV.

With selector switch A in position 1 and the master switch on, the
playback signal from the cassette is routed to the TV loudspeaker. Thus you
can hear a data file or any other recording as it is being played. A sound
source in a cartridge can be selected by setting the selector switch to
position 2 and turning on the master switch. A cartridge may contain a
sound or voice synthesizer, greatly increasing the sound capabilities of '
the Color Computer. The analog signal comes from pin 35 of the cartridge
connector.

A sound can also be generated by outputting successive highs and lows
from PB1 of PIA 2. The sound types that can be generated this way are more
limited than what the D/A converter can generate; only a high or low can be
sent out of PB1. The rate at which alternating highs and lows are sent will
determine the pitch of the sound. The relative length of time the output is
high compared to when it is low will determine the timbre of the sound. If
the master switch of selector switch A is turned on the sound will be a
combination of that selected by switch A and that generated by PB1. Since
PB1 is a sound source, it must be configured for outputting.



Listing 10-2 generates a tone which repeatedly slides from a low to a
high pitch. The tone is generated with the PB1 sound source.

100 *PROGRAM NAME: SLTON

110 *THIS PROGRAM WILL REPETITIVELY GENERATE A

120 *SLIDING TONE. EACH PITCH WILL BE OUTPUTTED FOR
130 *10 CYCLES, THEN THE PITCH WILL BE INCREASED.

140 *THE SOUND IS GENERATED WITH PB1 OF PIA #2.
150 Fkdddkokdokdokdiohodkok ek kh ik iodok o dedoddoiediedddodekodeokowok ok

160 SLTON - LDA $FF23 GET CRB

170 ANDA #3$FB CLR BIT 2

180 STA $FF23 ENABLE DDRB ACCESS
190 LDA #3$02 SET PB1 TO OUTPUT
200 STA $FF22 PUT IN DDRB

210 LDA $FF23 GET CRB

220 ORA #3$04 SET BIT 2

230 STA $FF23 ENABLE DRB ACCESS
240 SLA LDX #$00A0 GET MAX DELAY

250 LDB #20 GET CYCLE CNT
260 LDA $FF22 READ DRB

270 SLB EORA #302 TOGGLE BIT 1

280 STA $FF22 PUT IN DRB

290 DECB COUNT CYCLES

300 BNE SLC JMP IF NOT ZERO
310 LDB #20 GET CYCLE CNT

320 LEAX -2,X SHORTEN DELAY

330 CMPX #3$0000 HIGHEST PITCH?
340 BEQ SLA GO START OVER

350 sLC TFR X,Y GET DELAY

360 sLD LEAY -1,Y DECR DELAY

370 CMPY #$0000 END OF DELAY?

380 BNE SLD LOOP IF NOT

390 BRA SLB GO TOGGLE BIT

GO0 FrFddkokRdk kR ik idedhd R sk ks s sk i ok kdedded ki
410 END

Listing 10-2 The SLTON Program.

Lines 160 - 180 clear bit 2 of the CRB to allow access to the DDRB.
Lines 190 - 200 configure PB1 for output. Lines 210 - 230 set bit 2 of the
CRB to allow access to the DRB. Sound is generated by reversing the state
of bit 1 in the DRB at a specified rate. At line 250 the B register is
loaded with the number of times the bit will be reversed for each pitch.
At line 240 the X register is loaded with a count used to establish a time
delay between reversing PBI1. Lines 270 and 280 reverse the state of PBI.
Lines 350 - 390 create the time delay between reversing the state of PBI,
based on the value in the X register. Lines 290 - 340 check to see if ten
cycles have been produced, and if so, the value in X is decremented to
reduce the time delay between reversing the state of PB1, raising the
pitch.




THE CARTRIDGE CONNECTOR

The cartridge connector is a 40 contact electrical connector on the
right side of the Color Computer. Each contact, or pin, is internally
connected to an electrical signal within the computer. The signals comprise
the data bus, address bus, part of the control bus, and other signals. (See
Chapter 3 for a refresher on the internal buses the MC6809E MPU uses.) The
following descriptions are quite technical and may only be of interest to
those familar with digital electronics.

The 40 contacts are arranged. in two rows, each identified by its
number. The numbering scheme is shown in Fig. 10-8. The connector is shown
in Fig. 10-8 as viewed from outside the computer.

Top Row
393735333129272523211917151311 9.7 5 3.1

40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10

o
(=)
I
[\

Bottom Row
Fig. 10-8 Cartridge Connector Contact Numbering.

Many cartridge connector signals are bidirectional; that is, a signal
may be sent to or from a cartridge. Other signals are unidirectional, since
they may be sent only from the computer to a cartridge or only from a
cartridge to the computer. The state of a digital signal is determined by
the voltage on its connector. A set state is indicated by a high, about +5
volts, and a clear state is indicated by a low, about zero volts. Thus, the
signal DO, data bus bit 0, is high when bit 0 is set. Other signals may
indicate other conditions, such as an interrupt signal going to the MPU.
Some of these signals are high when active and others are low when active.
For example, the NMI signal is active when low, meaning the MPU
senses an NMI interrupt when this signal is low. When the NMI signal
is high, no interrupt is sent to the MPU. Thus, the NMI signal is
inactive when high. Table 10-3 lists all the 31gnals available at the
cartridge connector. Pins 1 and 2 are not connected to anything in the
Color Computer. 2. Those signals not bidirectional have a suffix to indicate
their direction. A right arrow indicates the signal originates in the
computer and is sent to the cartridge. A left arrow indicates the signal
originates in the cartridge and is sent to the computer. ‘



Pin Signal Name Pin Signal Name
1 -12 volts > 2 +12 volts >
3 HALT < 4 NMI <
5 RESET > 6 E >
7 Q > 8 CART <
9 +5 volts > 10 DO
11 Dl 12 D2

13 D3 14 D4

15 D5 16 D6

17 D7 18 R/W

19 A0 20 Al

21 A2 22 A3

23 A4 24 AS5

25 A6 26 A7

27 A8 28 A9

29 Al0D 30 All

31 Al2 32 CTS »>

33 GND 34 _GND

35 SND < 36 SCS >

37 Al3 38 Al4

39 AlS 40 SLENB <

Table 10-3 Cartridge Signals.

Power

Electrical power is sent to the cartridge through pins 1, 2, 9, 33, and
34. Pins 33 and 34 are ground connections. Ground is the reference point to
which all voltages are measured. Thus, a signal of +5 volts is five volts
higher than ground. Through pin 9 is sent +5 volts to provide power to
components in a cartridge. Up to 300 milliamps may be drawn from the +5
volt supply. Through pin 1 is sent =12 volts, and up to 100 milliamps may
be drawn. Through pin 2 is sent +12 volts, and up to 300 milliamps may be
drawn. A milliamp is one thousandth of an amp or ampere. Pins 1 and 2 are
not used in the Color Computer 2.

Data Bus

The data bus, bits DO - D7, is available at the cartridge connector. -
This is a bidirectional bus; a byte can be sent to or from the cartridge.
For example, a cartridge that contains ROM, such as EDTASM+, sends the
contents of a memory location into the computer over the data bus. If a

cartridge contains RAM or a PIA, a byte written to it would be sent to it
over the data bus.

~N O




Address Bus

The address bus, bits A0 - Al5, is available at the cartridge
connector. This, too, is a bidirectional bus. A memory location of ROM in a
cartridge is specified by the MPU, sending that address over the address
bus to the cartridge. The cartridge could also send an address-to the
computer to specify a RAM location to access. However, when the cartridge
is using the address bus in this way, the MPU must be stopped by putting a
low on the HALT signal line. The MPU will stop upon completion of :
the currently executing instruction and the buses will be available for use
by the cartridge.

Control Bus

The available signals of the control bus are; HALT, NMI,
RESET, E, Q, and R/W The RESET signal goes active low momentarily
when the computer is turned on and when the Reset button is pushed. This
signal initializes the MPU and PIAs within the computer and can be used
similarly for components in a cartridge. The E and Q signals are the clock
signals which originate within the computer and can be used to synchronize
the operation of components in a cartridge. The R/W signal is used by
whatever component is to write to or read from an address. Within the
computer, only the MPU generates this signal. However, when the MPU is
stopped, a component in a cartrldge can use this 51gnal to access RAM, ROM,
and/or the PIAs. The NMI signal must originate in the cartridge;
normally NMI is high. Setting it low momentarﬂy causes the MPU to
start the NMI interrupt sequence, if it is in a condition to do so.

The HALT signal originates in a cartridge, to be sent to the
MPU. When HALT is inactive high, the MPU is continuously operating.
When it is set low, the MPU stops on completion of the currently executing
instruction. When | the MPU is stopped it ceases to use the data and address
buses and the R/W signal, allowing components in a cartridge to use these
signals to access ROM, RAM, and/or PIAs in the computer. Setting
HALT back high causes the MPU to resume operation at the following
instruction.

Other Signals

Other signals available at the cartridge connector are; SND,

CART, CTS, SCS, and SLENB. CTS and SCS are outputs from the
computer to a cartridge and the others are inputs to the computer.

CTS goes low when the MPU accesses any address from $C000 - $FEFF
and the SAM TY control bit is clear. Under these conditions the MPU would
be accessing ROM or RAM in the cartridge. Thus, CTS low enables or
selects the ROM or RAM within a cartridge for transfer of a byte of data.

'SCS goes low when the MPU accesses any of the dedicated addresses
from $FF40 - $FF5F. SCS low enables or selects a PIA or similar
device within a cartridge for transfer of a byte of data. SCS also




goes low when the SAM TY control bit is clear and the MPU accesses any of
the redundant dedicated addresses associated with addresses $FF40 - $FF5F.
SND is an analog signal that originates in a cartridge. The SND signal
may be heard by setting the selector switch to position 2 and turning on
the master switch. The SND signal may range from 0 to +5 volts.
The CART signal originates in a cartridge and goes to CB1 of
PIA 2. If CBI is properly configured, an FIRQ interrupt will be generated
when CART goes low.
SLENB is a signal that originates in a cartridge and goes to
the SAM decoding circuits in the computer. Normally SLENB is
high, allowing the SAM to decode addresses, as described in Chapter Nine.
When SLENB is low, all address decoding is inhibited. In this
condition, no RAM, ROM or PIAs may be accessed by the MPU. The MPU
would only be able to access devices in the cartridge via the data and
address busses.




APPENDIX A
Flowcharts and State Diagrams

Before a program is written it should be described with a textual
description, a list of specifications, and/or a mental thought. A helpful
step is to draw a flowchart or state diagram. Each is a graphical
representation of the sequence of operations to be performed which satisfy
the program requirements. A flowchart or state diagram is very helpful
when writing, testing, and/or debugging a program; it presents an easily
understandable description closely related to the actual logic the program
follows. Save your flowcharts or state diagrams to use as a guide if you
later need to modify a program.

FLOWCHARTS

A flowchart is a graphical representation of a program or section of a
program. Within a flowchart major computations and the order in which they
are to be performed appear. The computations are described by boxes of
various shapes. The boxes are connected by arrows showing the order in
which the computations will be performed.

A large circle is used to denote the beginning and the end of a
program. A beginning circle is shown below; an end circle would contain the
word END:

A rectangular box contains computations and shows an assignment of a
value to a variable. The variable could be a memory location, specified by
its symbol, or a register in the MPU. Two or more computations may be
shown in a box where the top computation is to be performed first. An
example is shown below.

y

NEW <- NEW +1
Xreg<-0

\2

In this box above, first the value of NEW is incremented by one, then the X
register is cleared. The computation to the right of the arrow within a

box is performed and its result is directed to the variable to the left of

the arrow.




A decision is indicated by a diamond shaped box. Within the box is a
condition which, if false, will cause an exit from one corner of the
diamond. If the condition is true, one exits via a different corner. This

is shown below:
YES N
NO

If the value of STB is greater than nine, the YES path is taken; otherwise
the NO path is taken. A single decision box can also have multiple exits:

ST
equals

0>

1S

B
0
2

A subroutine is represented by a box with two lines on each side. The
operation of the subroutine should be shown in a flowchart located on a
following page. The subroutine box is shown below:

!

Calc.
Mortgage
Rate

2

This box can also represent an interrupt handler or any other predefined
process.

Special boxes represent input/output operations. To show outputting
text to the screen, the following box is used:




The following box represents an opereation geared to the speed of a human
operator. For example, this box represents an input operation, i.e.,
waiting for an operator to enter the date:

INPUT D$ E

Outputting to a printer is represented with a shape similar to a page
of paper with the bottom torn off:

"THE DATE IS";D$ |

i
Magnetic tape or cassette I/O is represented as below:

write
A reg.

In this example the contents of the A register are written to tape.
When a flowchart does not fit on one page, it is connected to the next

page with a small circle:
é on page 3

Fig. A-1 shows a flowchart of a program which clears memory locations
$1000 through $2000.




Y <- §1000

Address Y <~ 00

Y < Y + 1'_] A

: Y > $2000 NO

"DON:E;I

Fig, A-1 Example Flowchart.

STATE DIAGRAMS

A state diagram represents the sequence of operations a program
performs as paths which go from state to state. Each state is represented
by a circle in which is described the operation performed in that state.
The paths (arrows) indicate the flow from one state to another under
specific conditions. Thus, paths exiting a state indicate the different
results of an operation performed in that state. Each path is labelled
according to the result which will cause that path to be taken. Fig. A-2
shows an example of a state diagram for a program to input a decimal
integer from the keyboard. The operator indicates the number is complete
by hitting the ENTER key.

The keyboard is read in the first (topmost) state. The key which is
depressed will determine which path to take. If the depressed key is
neither a decimal digit nor the ENTER key, the read keyboard state is
re-entered. If the depressed key is a decimal digit, the ASCII code of the
digit is put into the buffer area. If the ENTER key is depressed, the
final state is entered: the ENTER ASCII code is appended to the decimal




integer in the buffer. The program section that follows this will read the
digits from the buffer until the ENTER code is detected.

not a

read decimal digit
keyboard

and not ENTER

put digit
in buffer

put ENTER
code at end of
number in buffer,

Fig A-2 Example State Diagram.




APPENDIX B - MC6809E Instructions

Courtesy of Motorola, Inc.
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APPENDIX C
Color Computer Character Codes

CODES GENERATED BY THE KEYBOARD (POLCAT)

Key Not Shifted Shifted Key Not Shifted shifted
Dec Hex Dec Hex | Dec Hex Dec Hex
Break 3 03 3 03 B 98 62 66 42
<- 8 08 21 15 c 99 63 67 43
->(1) 9 09 93 5D D 100 64 68 4h
¢ (D 10 OA 91 5B E 101 65 69 45
A (<) 94 5E 95 5F F 102 66 70 46
Clr ¢\ 12 oc 92 5C G 103 67 71 47
Enter 13 0D H 104 68 72 48
Space 32 20 I 105 69 73 49
: (<) 44 2c 60 3C Jd 106 6A 74 4A
- (=) 45 2D 61 3D K 107 6B 75 4B
. () 46 2E 62 3E L 108 6C 76 4C
/) 47 2F 63 3F M 109 6D 7 4D
0 48 30 N 110 6E 78 4E
1N 49 3 33 21 0 1M1 6F 79 4F
2 (M 50 32 34 22 P 12 70 80 50
3 51 33 35 23 Q 113 7 81 51
4 (%) 52 34 36 24 R 114 72 82 52
5 (%) 53 35 37 25 ) 115 73 83 53
6 (&) 54 36 38 26 T 116 74 84 54
7Y 55 37 39 27 U 117 75 85 55
8 (O 56 38 40 28 v 118 76 86 56
9 M 57 39 41 29 W 119 7 87 57
(%) 58 3A 42 2A X 120 78 88 58
HEC)) 59 3B 43 2B Y 121 79 89 59
a 64 40 19 13 z 122 7A 90 5A
A 97 61 65 41

Above items in parentheses are the characters generated when the SHIFT key
is held down. Note that the keyboard may be in the all upper case mode
when generating the alphabetic characters. - Press SHIFT and 0 to change
mode so that lower and upper case alphabetic characters can be generated.
Repeat this procedure to change back to the all upper case mode.




VIDEO DISPLAY CODES

Normal Reverse | Normal Reverse
Character Video Video Character Video Video
Dec | Hex Dec ) Hex Dec | Hex Dec | Hex
2 64 |40 0 | o0 space - 9 | 60 32 |20
A 65 |41 1101 i 97 | 61 33 |21
B 66 ;42 2 |02 u 98 | 62 34 | 22
C 67 143 3 |03 # 99 | 63 35 {23
D 68 | 44 4 104 $ 100 | 64 36 | 24
E 69 |45 5 {05 % 101 | 65 37 | 25
F 70 |46 6 {06 & 102 | 66 38 | 26
G 71 147 7 107 1 103 { 67 39 |27
H 72 | 48 8 |08 ( 104 | 68 40 | 28
I 73 149 9 |09 ) 105 | 69 41 1 29
d T4 | 4A 10 1 OA * 106 | 6A 42 | 2A
K 75 14B 11 | OB + 107 | 6B 43 | 2B
L 76 | 4C 12 | OC ' 108 | 6C 44 | 2C
M 77 [ 4D 13 | OD - 109 { 6D 45 | 2D
N 78 | 4E 14 | OE . 110 { 6E 46 | 2E
0 79 | 4F 15 | OF / 111} 6F 47 | 2F
P 80 |50 16 ¢ 10 0 1121 70 48 | 30
Q 81 |51 17 |1 1 M3} 7 49 1 3
R 82 |52 18 }12 2 14| 72 50 | 32
S 83 |53 19 113 3 115 73 51 ] 33
T 84 | 54 20 | 14 4 116 | 74 52 | 34
U 85 |55 21 | 15 5 117 | 75 53 | 35
v 86 {56 22 | 16 6 118.1: 76 54 36
W 87 157 23 | 17 7 1977 55 | 37
X 88158 24 | 18 8 120 |- 78 56 |-38
Y 89 | 59 25 | 19 9 121 |79 57 | 39
z 90. | 5A 26 | 1A : 122 |- 7A 58 |3A
[ 91 |58 27 | 1B ; 123 7B 59 | 3B
\ 92 .| 5¢C 28 | 1C < 124 |- .7C 60 .| 3C
] 93 .| 5D 29 | 1D = 125.1 7D 61 | 3D
* 94 | 5E 30 | 1E > 126} 7€ 62 | 3E
<- 95 ] 5F 31 | 1F ? 1271 7F 63 | 3F

Normal video is a black character on a light background. Reverse video is
a light character on a black background.




APPENDIX D - ASCIl CODES

Most Significant Digit (Hex)

0 1 2 3 4 5 6 7

L 0 |NUL DLE SP O a P ' p

e 1 SOH  DC1 [ 1 A Q a q

as 2 |sx obc2 w2 B R b r

s i 3 ETX DC3 # 3 C S c s

tg 4 | EOT DC4 $ 4 D T d t

n 5 ENQ@ NAK % 5 E u e u

i 6 | ACK SYN & 6 F v f v

f 7 | BEL ETB R 4 G W g W

i 8 BS CAN ¢ 8 H X h X

c 9 HT  EM Yy 9 I Y i y

a A LF suB * J i j z

nbD B VT  ESC + H K [ k €

ti c FF FS , < L \ L |

g D CR  GS - = M 1 m b

i E SO RS . > N ~ n ~
t F s1 US /2 0 ~ o  DEL

ASCII Control Codes
ACK - Positive Acnowledge BEL - Bell
BS - Backspace CAN - Cancel

CR - Carriage Return
DEL - Delete

EM - End of Medium
EOT - End of Transmission

ETB - End of Transmission Block

FF - Form Feed

GS - Group Separator

LF - Line Feed

NUL - Null

SI - Shift In

SOH - Start of Header

STX -~ Start of Text

SYN - Synchronizing Character
VYT - Vertical Tabulation

DCx - Device Control

DLE - Data Link Escape
ENQ - Enquiry

ESC - Escape

ETX - End of Text

FS - File Separator

HT - Horizontal Tabulation
NAK - Negative Acknowledge
RS - Record Separator

SO - Shift Qut

SP - Space

SUB - Substitute

US - Unit Separator




APPENDIX E
Dedicated Memory Addresses

Address Destination
FF00 DRA and DDRA of PIA 1
FFO01 CRA of PIA |
FF02 DRB and DDRB of PIA 1
FF03 CRB of PIA 1
FF20 DRA and DDRA of PIA 2
FF21 CRA of PIA 2
FF22 DRB and DDRB of PIA 2
FF23 CRB of PIA 2
FF40 Disk control register
FF48 Disk status (read)/command(write)
FF49 Disk track # register
FF4A Disk sector # register
FF4B Disk data register
FFCO - FFC5 SAM video display mode
FFC6 - FFD3 SAM video starting address
FFD4 - FFD5 SAM Page #
FFD6 - FFD9 MPU cycle rate
FFDA - FFDD Memory size
FFDE - FFDF Memory map mode
FFF2 - FFF3 SWI3 vector location
FFF4 - FFF5 SWI2 vector location
FFF6 - FFF7 FIRQ vector location
FFF8 - FFF9 IRQ vector location
FFFA - FFFB SWI vector location
FFFC - FFFD NMI vector location

FFFE - FFFF

RESET vector location




Index

A
A/D converter, 264-266 characteristic, 33-35, 41-43
absolute address, 135 CHROUT, 200-202
accumulator, 54-55 CLEAR, BASIC, 188
accumulator offset, 75-76 CLSCRN, 199-200
addition, binary, 7-9 comparator, 262
address bus, 49, 270 complement, 14-15
ALU, 51 conditional branch, 54
analog-to-digital converter, 264-266 . ‘constant offset, 74-75
AND, 15-16 control bus, 49, 270
arithmetic logic unit, 51 converting base of number, 20-22
arrays, 44-46 copy, editor, 130-131
ASCII, 35-36 CSRDON, 213
ASCII dsiplay, 148-149 D
assembler listing, 134 D/A converter, 260-262
assembler options, 137-138 data block, 209-210
attenuator, 262-263 data bus, 49, 269
auto-decrement, 55, 76-77 decimal adjust, 31, 101
auto-increment, 55, 76-77 decoding addresses, 229-230
B DEFUSRn, BASIC, 192-193
BASIC variables, 41 delete, editor, 131
Baud, 201 digital-to-analog converter, 260-262
BCD, expanded, 31-32 direct addressing, 80
BCD, packed, 30-31 directory, 39-40
BLKIN, 213-216 directory entries, 218-219
BLKOUT, 212 disassemble, 147
Boolean algebra, 13-19 disk directory, 218-219
breakpoint, 152 disk I/0, 217-219
buffer, 128 DISPL, 202-203
byte, 19 display, ZBUG, 154
byte display, 148 division, binary, 13-14
byte overflow, 79 DSKCON, 219-223
C duality, 18
call, 164 E
main program responsibilities, 165-171 EBCDIC, 35
cartridge connector, 268-271 edit, 131
cassette I/0O, 207-211, 263-264 effective address, 55

cassette motor, 210, 258 END, 139



EOF block, 210
EQU, 140
exclusive or, 16
EXEC, BASIC, 188-192
extended addressing, 68-69
extended indirect addressing, 69
F
FCB, 140
FCC, 140-141
FDB, 141
FIFO, 40
file allocation table, 218-219
find, 131-132
FIRQ interrupt, 63-64, 122, 250-251
fixed point, 32-33
flags, CC, 52-53
floating point, 33-35, 41-43
G
‘Go, 151
granule, 218
H
half-carry, 53
HALT, 60, 270
header block, 208-209
hexadecimal numbers, 19-23
I
immediate addressing, 67-68
inclusive or, 15
index registers, 55-56
indexed addressing, 72-77
indexed indirect addressing, 77-78
inherent addressing, 67
insert, 132
instruction fetch, 50-51
interrupts, controlling, 249-252, 257
interrupt handler, 176, 181-185
interrupt vector table, 177
IRQ interrupt, 62-63, 122-128, 250
J
JOYIN, 206-207
joystick fire button, 205, 256-257
joystick position, 205-207, 264-266
K
keyboard, 203-205, 255
L

label, 48
LIFO, 40-41
linked tables, 38-39
load, editor, 132
load, ZBUG, 153

M
machine instruction, 47-48
machine language, 48
mantissa, 33-35, 41-43
memory, 24-27
memory size, 227, 258-259
mnemonic, 48
mnemonic display, 147
move, ZBUG, 152-153
MPU controller, 49-50
MPU cycle rate, 227-228
multiplication, binary, 12-13
multiprogramming, 175

N
name, 48
nested subroutines, 166-167
nibble, 20
NMI interrupt, 64, 123-124, 253
normalize, 33-35
NOT, 14-15
numeric base, 149
numeric variable, 41-42

0
op code, 47
operand, 47
operand field, 47
operation code, 47
ORG, 141-142
overflow, 8-9, 53

P
Page #, 228
PC relative addressing, 80-83
Peripheral Interface Adapter, 230-232
PIA, 230-232
PIA control register, 233-235
PIA data direction register, 232-233
PIA data register, 232
PIA dedicated addresses, 235-236
PIA initializing, 235
PIA interrupt flags, 236



pixcel, 239
pointer, 37-41
POLCAT, 203-205
position independent, 81-82
postbyte, 67
pre-interrupt responsibilities, 179-181
print, editor, 132
print, ZBUG, 154
printer, editor, 132
pseudo-commands, 139-143
pseudo-operation, 127
pull, 41
push, 41
put, ZBUG, 153
Q
queue, 40-41
R
RAM, 24
reentrant subroutines, 176
redundant dedicated addresses, 229-230
register display, 151-152
registers; A, B, D, 54-55
CC, 52-54
DP, 57-58
I, 49
PC, 50-51
U, S, 566-57
X, Y, 55-56
register addressing, 70-72
relative address, 136
relative addressing, 79
renumber, 132-133
replace, 133
RESET, 60, 124
RMB, 142
ROM, 27-28
S
SAM, 225-230
SAM dedicated addresses, 225
sector, 218
selector switch, 262
serial I/0, 201-202, 257-258
SET, 142-143
SETDP, 143
sign extension 7, 116

signed binary, 5-7, 92-30
single step, 151
skip factor, 218
software interrupts, 64-65
sound generation, 266-267
stack, 40-41
stack pointer, 56
straight binary, 4-5, 29
string descriptor, 43-46
string variable, 43-44
subroutine, 164-165
subtraction, binary, 10-12
symbol, 135
synchronous address multiplexer, 225-230
system bus, 49

T
tables, 36-39
track, 217
two's complement, 5-6, 9-10
TY bit, 225-226

U
underflow, 12
USRn, 192-193

v
VDG, 236-238
vector address, 61, 177
vector jump table, 177
verify, editor, 133
verify, ZBUG, 153
video display code, 144, 239
video display generator, 236-238
video display modes, 237, 239-249
video starting address, 228, 236
volatile, 24

W
word, 19
word display, 148
write, 133
WRTLDR, 211

Z
zero offset, 72-73












With the right software the Color Computer is almost
omnipotent. In your hands is a perfect example. This book
was written on the Color Computer using the Telewriter-64
(Cognetic) word processing program. Also, every word of text
was typeset using the CoCo and the Hewlett Packard LaserJet
printer. The possible uses of the CoCo seem limitless.

This book shows in a tutorial fashion how to program in
assembly language. Assembly language may be low level but it
provides access to all the CoCo capabilities and programs
written in this language execute very quickly. Therefore,
all the hardware functions and capabilities of the CoCo and
how to control them with assembly language are also
explained in this book. A knowledge of assembly language
will allow you to write your own unique programs. This
knowledge will also allow you to determine how other
programs work and then modify them to suit your needs.




